欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    5.2导数的运算公开课教案教学设计课件资料.docx

    • 资源ID:993989       资源大小:58.53KB        全文页数:15页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    5.2导数的运算公开课教案教学设计课件资料.docx

    5.2导数的运算XXX一元函数的导数及其应用5.2导数的运算5. 2.1基本初等函数的导数例1求下列函数的导数:2(1) y=%3;(2) ylog2x.解:(l)y'=(%w)=(3) =(log2x)z-.J'xln2例2假设某地在20年间的年均通货膨胀率为5%,物价p(单位:元)与时间t(单位:年)有如下函数关系p(t)=p0(l+5%)t,其中Po为£=0时的物价.假定某种商品的Po=I,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01元/年)?解:根据基本初等函数的导数公式表,有pz(t)=1.05tlnl.05.所以pz(10)=1.051°lnl.050.08.所以,在第10个年头,这种商品的价格约以0.08元/年的速度上涨.练习1.求下列函数的导数:y=妥(2)y=VF(3)y=3x(4)y=x(5)y=Iog4X(6)y=IogiX2【答案】(l)y'=-4%41/=押(3)y,=3xln3(4)y,=()xIny'=总【分析】根据基本初等函数函数的导数公式计算可得;(1)解:因为y=2=工-4,所以y,=Q-4),=一轨-5;(2)解:因为y=V=,所以y'=(艰)=*;(3)解:因为y=3所以=3*ln3;(4)解:因为y=G)x,所以V=G)*ln(5)解:因为y=log4x»所以y'=高;(6)解:因为y=log产所以V=.=/;422.求下列函数在给定点的导数:(l)y=XS在=3处的导数;(2) y=Inx在=,处的导数;(3) y=sin%在=2花处的导数;(4) y=靖在=。处的导数.【答案】(1)/=405;()=;(3)/(2兀)=1;(4)/(0)=1.【分析】运用求导公式对所给函数进行求导,然后再求所求点的导数值.【详解】(1)因为y=好,所以y,=5%4,所以在=3处的导数为:(3)=5X34=405;因为y=ln%,所以/=;所以在=押的导数为f()=*(3)因为y=sinx,所以y'=CoSX,所以在=2r处的导数为尸(2所=cos2=1;(4)因为y=e",所以y'=e,所以在X=O处的导数为f'(0)=e°=1.3 .求余弦曲线y=CoSX在点(,0)处的切线方程.【答案】y=-%+【分析】求导得y=cos的导数,可得切线的斜率,由直线的点斜式方程可得切线方程.【详解】因为y=cosx,则y'=-sinx,可得曲线y=cos%在点¢,0)处的切线斜率为k=-1,则曲线y=CoSx在点6,0)处的切线方程为y=-%+/,故答案为:y=+4 .求曲线y=/在点(4,2)处的切线方程.【答案】y=5+1【分析】先求导数,然后求出切线的斜率,即可得到切线方程.【详解】解:.=l4=-l=,,,浊E=?1:k=二4所以切线方程为y-2=0-4),即y=%+l5 .2.2导数的四则运算法则例3求下列函数的导数:(1) y=X3-X+3;(2) y=2x+cosx.解:=Q3-x+3y=(/),-(%),+,=3x21;(3) y,=(2x+COS%)'=(2xy+(CoSXy=2xn2sinx.例4求下列函数的导数:(l)y=x3ex解:y,=(x3ex)z=(x3),ex+x3(ex)z=3x2ex+x3ex.=(智)(2SinXyX2_2sinx(x2)z2x2cosx4%SinX二=2xcosx-4sinx='例5日常生活中的饮用水通常是经过净化的.随着水的纯净度的提高,所需净化费用不断增加.已知将It水净化到纯净度为x%时所需费用(单位:元)为COO=篙§(80V%V100).求净化到下列纯净度时,所需净化费用的瞬时变化率:(1)90%;(2)98%.解:净化费用的瞬时变化率就是净化费用函数的导数.,(5284CW=(10)_5284,X(100-%)-5284X(100-x)z二(100-x)2_0×(100-x)-5284×(-1)二(100-X)25284一(100-X)2,(1)因为c'(90)=(覃2)2=52.84,所以,净化到纯净度为90%时,净化费用的瞬时变化率是52.84元/吨.(2)因为c'(98)=(尉;81=1321,所以,净化到纯净度为98%时,净化费用的瞬时变化率是1321元/吨.函数/(%)在某点处导数的大小表示函数在此点附近变化的快慢.由上述计算可知,c,(98)=25(90).它表示净化到纯净度为98%左右时净化费用的变化率,大约是净化到纯净度为90%左右时净化费用变化率的25倍.这说明,水的纯净度越高,需要的净化费用就越多,而且净化费用增加的速度也越快.练习1.运用基本初等函数的导数公式与导数运算法则,重新求解5.1节例2.你是否感觉到运算法则给解题带来的方便简捷?5.求下列函数的导数:(l)y=2x33x2-4;(2)y=3cosx+2X;(3)y=exlnx试卷第4页,共14页(4) y=(x2+2x)%;(5)y=9,(6)y-tanx【答案】y'=6/-6%;(2)y,-3sinx+2xln2;(3)y,exnx+y;(4)y'-+3x2;(5)y,=(6)y,=J2yx2zCOS2X【分析】运用导数求导法则直接求导即可得到结果.详解(1)y,=6x26x(5) y,=-3sinx+2xln2(6) y,=exnx+(7) y,=(2x+2)x+1(x2+2x)xz(5) y,=7xlnx ITnXcosxcosx+SinxsinxCOS2X6.求曲线y=%?+:在点(1,4)处的切线方程.【答案】x+y-5=0【分析】先求解出尸。),然后求解出尸(I)J(I),由此可写出切线的点斜式方程并将其转化为一般式方程.【详解】I因为旷=(幻=2%-晟,所以尸(I)=2-3=-1,/(1)=1+3=4,所以切线方程为:y-4=-(x-l),即为x+y-5=0.5.2.3简单复合函数的导数例6求下列函数的导数:(1)y=(3x+5)3:(3)y=ln(2x-1).解:(1)函数、=(3%+5)3可以看作函数丫=1?和=3%+5的复合函数.根据复合函数的求导法则,有=(u3y(3x+5)z=3u2×3=9(3x+5)2.(2)函数y=e-0°5"i可以看作函数y=M和=-0.05x+1的复合函数.根据复合函数的求导法则,有y1二几火=(eu)f(-0.05x+Iy=-0.05eu=-O.O5eoosx+1.(3)函数y=ln(2x-1)可以看作函数y=In和=2x-1的复合函数.根据复合函数的求导法则,有y1=几火=(lnu)z(2x-l)r1=2X-u2-Zx-1"例7某个弹簧振子在振动过程中的位移y(单位:mm)关于时间t(单位:S)的函数满足关系式y=18sin(与t-.求函数y在£=3s时的导数,并解释它的实际意义.解:函数y=18sin(争一§可以看作函数y=18sin和II=争一郛复合函数,根据复合函数的求导法则,有=(18SimZy(竽£一2=18cosu×=i2c°s(f-D当C=3时,y,t=12cosC)=0.它表示当t=3s时,弹簧振子振动的瞬时速度为Omms练习7.求下列函数的导数:(3)y=Iog2(2x+1)(4)y=cos:(5)y=sin(y-3x)(6)y=22x-1【答案】(l)y'=-3(3%+l)V(2)y,=-6(1-2x)2(3)y,=-'AZ(2x+)ln2(4)y,=-jsin三(5)y'=3sin3x(6)y,=4xln4【分析】根据基本初等函数的导数公式及复合函数的导数运算法则计算可得;(1)解:因为y=2(3%+1)4,所以/=2(3x+1)m'=-3(3%+1)号(2)解:因为y=(l-2x)3,所以:/=(1-2乃3=-6(1-2%)2(3)解:因为y=IogzQx+1),所以(=log2(2x+l)r=岛莅(4)解:因为y=cosj所以y'=(cos3)=-;Siw(5)解:因为y=sin(y-3x)=-cos3x,所以y'=(-cos3x)z=3sin3x(6)解:因为y=22*-1=4*一1,所以/=(4*-1)'=4Y48 .求下列函数在给定点的导数:(l)y=e-2*在=:处的导数;(2) y=ln(5x+2)在X=1处的导数.【答案】(1)-2e2;(2)【分析】(1)先根据复合函数的求导法则求解出y=e-2的导函数y,然后将X=T代入导函数计算出结果即可;(2)先根据复合函数的求导法则求解出y=ln(5x+2)的导函数然后将=1代入导函数计算出结果即可.【详解】(1)因为y=e-2*-可以看作函数y=e"和=一2%-1的复合函数,所以为,=%,-ux,=(eu)f(-2x-iy=-2eu=-2e-2x-1,所以当=泄,yx'=-2e-2;(2)因为y=ln(5x+2)可以看作函数y=In和=5x+2的复合函数,所以%'=%,ux'=(Ina)'(5%+2)'=:=嘉,所以当=1时,%'=*9 .求曲线y=、3x一1在点6,1)处的切线方程.【答案】y=%+g【分析】求出曲线y=反二T在点住,1)处的切线的斜率,利用点斜式可得出所求切线的方程.【详解】设y=fM=(3x-l)t则/G)=3×(3x-1)4=(3x-1)4,则/仔)=1,因此,曲线y=反二!在点gl)处的切线方程为y-l=%即y=%+/习题:5.210 .求下列函数的导数;(l)y=2x3-3x2÷5(2)y=-+PXX+1(3)y=2x+log2x(4)y=xnex(5)y=JSinxSinx【答案】(l)y'=6x2-6x(2)y,=-2x-2-4(x+l)(3)y'=2xn2+-7“xln2(4)y'=nxn1ex+xnex(5)y'3x2sinx-cosx(x3-l)-sin2x-(6)y'l+sin2x【分析】根据基本初等函数的导数公式及导数的运算法则计算可得;(1)解:因为y=2炉3/+5,所以y'=62-6%;(2)解:因为y=j+.=2%+4(%+l)T,所以y'=-2%-2-4(%+1)-2;(3)解:因为y=2*+log2,所以y'=2"ln2+-;%;(4)解:因为y=%ne”,yz=(xnyex+xn(exy=nxn1ex+xnex;解:因为y=窸,所以y'(Sinx)2sin2x(3-)'sinX-(SinX)U1)_3/SinX-COSX(X3-1)(6)解:因为y=sinxsinx+cosx(sinx)z(sinx+cosx)-(sin

    注意事项

    本文(5.2导数的运算公开课教案教学设计课件资料.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开