欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    支持向量机是有监督还是无监督.docx

    • 资源ID:70826       资源大小:170.94KB        全文页数:9页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    支持向量机是有监督还是无监督.docx

    支持向量机是有监督还是无监督有监督支持向量机(SUPPOrtVeCtOrmaChine,SVM)是一种有监督的机器学习算法,主要用于解决分类问题。一、什么是支持向量机?支持向量机是一种有监督的机器学习算法。该算法广泛用于数据科学/机器学习问题,因为该算法非常强大且用途广泛。支持向量机可用于线性和非线性分类、回归,甚至异常检测。它大量用于具有复杂的中小型数据集的分类问题。支持向量机是一种非概率线性分类器,它使用几何方法来区分数据集中的不同类别。二、支持向量机中使用的术语是什么?我们了解什么是支持向量机。现在我们将深入探讨支持向量机中使用的核心概念和术语。2.1支持向量向量是表示在维图像上的数据点。例如,我们在像这样(x,y)的2D图和像这样(x,y,z)这样的3D图上表示一个点,其中x,y,z是图像的轴。1210681012141618X-axis图为:支持向量因此,支持向量是n维图像上的向量,它们是离超平面最近的点并影响超平面的方向。通过这个支持向量,我们传递了超平面的正边距和负边距。2.2超平面超平面只不过是具有(nT)维的决策边界,其中n是数据集中的列数。超平面分离不同类的点/向量。示例1:在2D图像中,我们使用如下所示的线分隔点。图为:二维超平面图片中的绿线充当超平面,该超平面的方程将等于线的方程:y=WiX+Wo我们可以将其重写为:W2X2+WiZi÷Wo=示例2:在3D图像中,我们使用如下所示的平面来分隔点。图像中表示的平面充当超平面,该超平面的方程将等于平面的方程,即:W3X3+W2X2÷WiZi÷Wn=0同样,对于n维数据集,超平面方程将是:WnXn+W3X3+W2X2+WiZi÷Wo0如果我们以向量形式重写则是:WX÷w0=O2.3核函数核函数是SVM中用于将非线性数据转换为更高维数据集的数学函数,以便SVM可以通过使用超平面来分离数据的类别。在Scikit-Iearn中,SVM支持各种类型的内核,如"linear"、"poly”、“rbf”、“sigmoid”o此外,我们可以创建自己的核函数并将其传递给scikit-learnSVMo现在让我们看一个例子来更好地理解核函数的作用:下图代表两种类型的数据点。现在,如果我们想创建一个超平面,看起来像这样:-2.0-1.5 -1.0 -0.50005 LO L5 ZUSVMDecision Boundary我们可以观察到它无法正确分离所有点。但是如果我们考虑径向基函数作为核函数。ZO15LO0.500-05-1.0-1.5-2.0图为:RBF核超平面它能够正确地分离所有点。怎么做到的呢?实际上,径向基函数核函数会像下图那样转换数据集。我们可以观察到,在3D图像中我们可以绘制一个超平面来分离这些点。这就是借助正确的核函数让SVM对数据点进行分类的方式。2 .4边距(margin)边距是通过支持向量的线,它们始终平行于超平面。3 .支持向量机如何解决分类问题支持向量机的主要任务是最大化边距离之间的距离,使得没有点越过边缘。这也称为“硬边距SVM"o在理想情况下,上述条件永远不会违反,距离可以计算为:但在现实世界中,我们总是会得到带有一些异常值的不纯数据,如果我们遵循硬边距概念,那么我们将无法创建任何超平面。因此,引入了一个新概念,即“SoftMarginSVM在此,我们引入了一个新概念,即“HingeLossv:在softmarginSVM中,较链函数是离群点和边缘之间的距离之和,然后乘以超参数“C”:4 .支持向量机如何解决回归问题?在回归中,SVM采用了一些不同的方法。这种方法可以用三行来解释o第一行是最佳拟合回归线,另外两行是表示误差范围的边界线。换句话说,最佳拟合线(或超平面)将是通过最大数量数据点的线,并且选择误差边界以确保最大包含。5 .支持向量机的优缺点是什么?优点:- SvM在高维空间中是有效的;- 在维数大于样本数的情况下仍然有效;- SVM是内存高效的;缺点:- 如果特征的数量远大于样本的数量,那么在选择核函数时就避免了过拟合;- SVM不像Logistic回归那样直接提供概率估计;6.如何使用Scikit-Iearn实现支持向量机?SVM的实现非常简单易行。我们只需要导入Sklearn包。对于这个例子,我们使用了一个已经存在于Sklearn包中的玩具数据集,这个例子是一个分类问题。此外,我们将从python中导入一些必要的包。importumpyasnpfromsklearn.svmimportSVCfromsklearn.datasetsimportload_breast_cancerfromsklearn.model_selectionimportGridSearchCV,train_test_splitfromsklearn.metricsimportaccuracy_score,confusion-matrix,fl-sccre提取数据:raw_data=load_breast_cancer()data=raw_data.datatargetMrav/_data.target我们使用乳腺癌(诊断)数据集:DataSetCharacteristics:NumberofInstances:569:NumberofAttributes:30numeric,predictiveattributesandtheclass:AttributeInformation:- radius(meanofdistancesfromcentertopointsontheperimeter)- texture(standarddeviationofgray-scalevalues)- perimeter- area- smoothness(localvariationinradiuslengths)- compactness(perimeter2/area-1.0)- concavity(severityofconcaveportionsofthecontour)- concavepoints(numberofconcaveportionsofthecontour)- symmetry- fractaldimension("coastlineapproximation"-1)-class:- WDBC-Malignant- WDBC-Benign将数据集切分为训练集和测试集:#Dividingthedatasetintotrain,testset.x_train,x_test,y-train,y_test=train-test-split(datajtarget,teSJSiZe=0.25,r/欣逸Jtaw=现在使用训练数据训练模型然后预测测试数据的结果:model=SVC(C=1.0,kernel='rbf',degree=3,gamma='scale',coef=.0,Shrinking=True,probability=False,tol=.01,CaChJSiZe=2的,class_weight=None,Verbose=False,max-iter=-1,decision_function_shape='ovr',break-ties=Falsejrandom_state=None)model.fit(x-train,y_train)yj)red=model.predict(x_test).最后使用混淆矩阵、accuracy_score和Fl_score测量准确度:print(,"confusion-matrix:',+,nn"+str(confusion-matrix(y-testjy_pred)print(,accuracy-score:',+str(accuracy-score(y-test,y_pred)print(MFl_score:,+str(fl-score(y-test1y_pred)confsion-matrix:486188accuracy_score:.9514895148951Flscore:0.9617486338797814

    注意事项

    本文(支持向量机是有监督还是无监督.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开