欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    灰色预测检验.docx

    • 资源ID:251743       资源大小:16.33KB       
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    灰色预测检验.docx

    道路交通事故灰色VerhUlSt预测模型网灰色预测是通过原始数据的处理和灰色模型的建立,发现和掌握系统发展规律,对系统的未来状态做出科学的定量预测。目前应用较多的灰色预测模型是GM(1,1)模型、灰色马尔可夫预测模型等,可用于预测交通事故发生次数、死亡人数、受伤人数和财产损失等指标。GM(1)模型适用于具有较强指数规律的序列,只能描述单调的变化过程。但是道路交通系统是一个动态的时变系统,道路交通事故作为道路系统的行为特征量,具有一定的随机波动性,它的发展呈现某种变化趋势的非平稳随机过程,因此可建立交-563-通事故灰色马尔可夫预测模型,以提高预测精度。但灰色马尔可夫预测模型的应用难点是如何进行状态划分,故对于非单调的摆动发展序列或具有饱和状态的S形序列,Verhulst模型,GM(2,1)模型等更适用。Verhulst模型主要用来描述具有饱和状态的过程,即S形过程,常用于人口预测、生物生长、繁殖预测及产品经济寿命预测等。近年来中国道路交通事故表现为具有饱和状态的S形过程,故可采用VerhUlSt模型对其进行预表5谡是检验表平均相对误差A关联度r均方差比值C小误差概率P0.03130.98150.22021表6常用的精度等级表等级平均相对误差A关联度r均方差比值C小误差概率P级0.010.900.350.95二级0.050.800.50.80三级0.100.700.650.70四级0.200.600.800.60把误差检验表跟常用的精度等级表对比可知,模型的等级接近一级,也即是说,该模型的拟合精度很高,可用来预测。3.模型2BP神经网络预测模型附件中根据污染程度不同把水质状况分为六类,可以分别针对各类水质状况的河流长度比例在未来十年的变化进行预测。得到未来六类不同水质河长比例的变化,从而可以全面显示未来十年污染趋势的变化针对第i类污染程度的河流长度比例进行分析,首先选择输入数据,不同水质河长的比例必然同长江流域内的排污量有关,而未来十年的排污量已经由灰色模型预测得到。另外根据对附件中数据的分析,长江的污染程度表现出某种周期性的波动,可以预测不同水质河长的比例应有关于时间上的规律,因此输入数据中可以用待预测当年前三年的数据来显示这种波动。从而建立了四个输入变量个输出变量的三层神经网络,IiS层选择目前并没有可靠的成熟理论.可根据数据的复杂度尝试不同的隐层节点数目。本文中选择的网络拓扑结构图,如图5

    注意事项

    本文(灰色预测检验.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开