欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > PPT文档下载
    分享到微信 分享到微博 分享到QQ空间

    判别分析案例.ppt

    • 资源ID:192889       资源大小:3.97MB        全文页数:49页
    • 资源格式: PPT        下载积分:7金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要7金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    判别分析案例.ppt

    多元统计分析判别分析判别分析把对象归到已知类中 人们常说:“像诸葛亮那么神机妙算”“像泰山那么稳固”“像钻石那么坚硬” 一些判别标准都是有原型的,虽然这些判别的标准并不那么精确或严格,但大都是根据一些现有的模型得到的。判别分析的方法 距离判别法 Fisher判别法 Bayes判别法 逐步判别法距离判别法 假设有两个总体G1和G2, 如果能够定义点x到它们的距离D(x,G1)和D(x,G2), 则如果D(x,G1) D(x,G2),则 xG1如果D(x,G2) w=read.table(disc.txt);attach(w);wV1代表Group。 V1=factor(V1) #把分组变量变成定性变量。R语言实现 train=sample(1:90,45) #随即抽取一般样本作训练样本。 table(V1train) #显示训练样本中各类的比例。 library(MASS); z=lda(V1.,data=w,prior=c(1,1,1)/3,subset=train)#用V1作分组变量,V2-V9作判别变量,使用训练样本生成判别函数,先验概率各为33.3%。R语言实现先验概率各为33.3%。判别系数第1个判别函数贡献率为98.7%;第2个判别函数贡献率为1.3%。R语言实现 a1=predict(z,w-train,) #用z的结果预测训练样本外的点 a2=predict(z,w) #对z的结果预测所有样本点 a2$class #给出分类结果 a2$x #给出每个点的二维坐标 y=cbind(a2$x,a2$class); y1=yy,3=1,-3; y2=yy,3=2,-3; y3=yy,3=3,-3; plot(y1,1,y1,2,pch=0,xlim=c(-10,8.5),ylim=c(-4,3),ylab=,xlab=) points(y2,1,y2,2,pch=1) points(y3,1,y2,2,pch=2)R语言实现第一类第二类第三类谢谢观看!

    注意事项

    本文(判别分析案例.ppt)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开