欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    13.3.1《等腰三角形》教案.docx

    • 资源ID:1791907       资源大小:13.17KB        全文页数:5页
    • 资源格式: DOCX        下载积分:3金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要3金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    13.3.1《等腰三角形》教案.docx

    等腰三角形教学目标1 .等腰三角形的概念.2 .等腰三角形的性质.3 .等腰三角形的概念及性质的应用.教学重点1 .等腰三角形的概念及性质.2 .等腰三角形性质的应用.教学难点等腰三角形三线合一的性质的理解及其应用.教学过程I .提出问题,创设情境在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,并且能够作出一个简单平面图形关于某一直线的轴对称图形,还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:三角形是轴对称图形吗?什么样的三角形是轴对称图形?有的三角形是轴对称图形,有的三角形不是.问题:那什么样的三角形是轴对称图形?满足轴对称的条件的三角形就是轴对称图形,也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.我们这节课就来认识一种成轴对称图形的三角形一等腰三角形.II .导入新课要求学生通过自己的思考来做一个等腰三角形.作一条直线1.,在1.上取点A,在1.外取点B,作出点B关于直线1.的对称点C,连结AB、BC、CA,则可得到一个等腰三角形.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.思考:1 .等腰三角形是轴对称图形吗?请找出它的对称轴.2 .等腰三角形的两底角有什么关系?3 .顶角的平分线所在的直线是等腰三角形的对称轴吗?4 .底边上的中线所在的直线是等腰三角形的对称轴吗?底边上的高所在的直线呢?结论:等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.要求学生把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.由此可以得到等腰三角形的性质:1 .等腰三角形的两个底角相等(简写成“等边对等角“).2 .等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).如右图,在AABC中,AB=AC,作底边BC的中线AD,因为所以Abad2Acad(sss).所以NB=NC.如右图,在AABC中,AB=AC,作顶角NBAC的角平分线AD,因为所以ZBAD04CAD.所以BD=CD,NBDA=NCDA=NBDC=90。.例1如图,在AABC中,AB=AC,点D在AC上,且BD=BC=AD,求:AABC各角的度数.分析:根据等边对等角的性质,我们可以得到ZA=ZABD,ZaBC=ZC=ZBDC,再由NBDe=NA+NABD,就可得至UNABC=NC=NBDC=2NA.再由三角形内角和为180。,就可求出AABC的三个内角.把NA设为X的话,那么NABC、NC都可以用X来表示,这样过程就更简捷.解:因为AB=AC,BD=BC=AD,所以NABC=NC=NBDCZA=ZABD(等边对等角).设NA=x,则ZBDC=ZA+ZABD=2x,从而NABC=NC=NBDC=2x.于是在AABC中,有ZA+ZABC+ZC=x+2x+2x=180°,解得x=36o.在AABC中,ZA=35o,ZABC=ZC=72o.师下面我们通过练习来巩固这节课所学的知识.II1.随堂练习(一)阅读课本,然后小结.IV .课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们.V .作业课后作业:VV课堂感悟与探究>>板书设计13.3.1等腰三角形(一)一、设计方案作出一个等腰三角形二、等腰三角形性质1 .等边对等角2 .三线合一参考练习一、选择题1 .如果AABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高;B.某一条边上的中线C.平分一角和这个角对边的直线;D.某一个角的平分线2 .等腰三角形的一个外角是100。,它的顶角的度数是()A.80oB.20oC.80。和20。D.80。或50。答案:1.C2.C二、已知等腰三角形的腰长比底边多2cm,并且它的周长为16Cm.求这个等腰三角形的边长.解:设三角形的底边长为XCm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4cm、6cm和6cm.

    注意事项

    本文(13.3.1《等腰三角形》教案.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开