欢迎来到优知文库! | 帮助中心 分享价值,成长自我!
优知文库
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 优知文库 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    基于主题模型的餐馆推荐算法分析研究计算机科学与技术专业.docx

    • 资源ID:1153111       资源大小:279.42KB        全文页数:31页
    • 资源格式: DOCX        下载积分:7金币
    快捷下载 游客一键下载
    账号登录下载
    微信登录下载
    三方登录下载: QQ登录
    二维码
    扫码关注公众号登录
    下载资源需要7金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    基于主题模型的餐馆推荐算法分析研究计算机科学与技术专业.docx

    前言11.1 研究背景及意义21.2 相关研究及现状31.3 论文的工作与组织结构4第2章相关理论介绍52.1 主题模型概述52.1.1 主题模型简史52.1.2 1.DA简要介绍62.1.3 LDA模型推断72.2 推荐算法概述72.2.1 基于邻域的推荐82.2.2 基于内容的推荐82.3 推荐系统评估8第3章基于主题模型的餐馆推荐算法103.1 主要任务103.2 餐馆推荐模型113.2.1 问题的形式化表述113.2.2 餐馆推荐LDA模型123.2.3 基于主题模型的推荐143.3 实验与分析143.3.1 数据预处理143.3.2 实验及结果分析15第4章搭建推荐展示系统194.1 系统的需求分析194.2 系统的设计实现194.2.1 相关技术介绍194.2.2 系统的实现204.2.3 系统的运行演示21第5章总结与展望235.2工作展望23参考文献25摘要现如今推荐系统可见之于人们的生活中的方方面面。无论是阅读、购物、电影还是音乐,都能看到个性化推荐的影子。而随着互联网+的提出和发展,互联网+餐饮服务也渐渐成为一个热门的服务领域。将推荐系统应用于餐馆推荐也因此成为推荐系统的一个热门的应用方向。餐馆推荐,简单来说就是要根据用户的历史到访记录,分析和预测用户可能喜欢的餐馆,并向用户做推荐,以此来帮助用户在各色各样的餐馆中找到自己喜欢的餐馆。经典的推荐算法,比如说协同过滤算法,完全可以用于进行餐馆推荐,而且也应该能取得不错的效果。但是本文并没有采用经典的推荐算法,而是提出了一种基于主题模型的专门用于餐馆推荐的算法。该算法综合考虑了用户的评论和位置信息,能够根据用户的历史评论记录和到访记录对用户进行餐馆推荐。由于主题模型能够将餐馆数据映射到低维的主题空间,因而能够挖掘餐馆之间的隐含联系,同时在一定程度上也能够缓解数据稀疏的问题。此外,主题的词分布还能为推荐提供良好的解释。最后,经过设计实验将模型应用于Yelp数据集做推荐,证实了本文中所设计的推荐算法的有效性。除此之外,为了方便展示,本文还设计实现了一个推荐展示系统。该系统实现了一个完整的前后台数据交互的过程,能够在前端页面上为相应的用户展示其推荐结果信息。该系统使用SerVIet作为后台程序,采用经典的AjaX技术实现前端页面与服务器的数据交互,并调用了百度地图APl用于将餐馆的位置数据在地图上可视化。关键词:推荐系统;主题模型;LDA;餐馆推荐AbstractRecommendersystemcanbeseeneverywhereinpeople'sallaspectsoflives.Whetheritisreading,shopping,moviesormusic,youcanfindtheapplicationsofpersonalizedrecommendations.And,withthedevelopmentoftheInternet+,Internet+cateringservicehasgraduallybecomepopular.Atthesametime,applyingtherecommendersystemtotherestaurantrecommendationisalsoapopulardirectionoftheapplicationofrecommendersystem.Therestaurantrecommendationistoanalyzeandpredicttherestaurantsthattheusermaylikebasedonthehistoryoftheuser'sreviewsandvisit,andmakerecommendationstotheuser,soastohelptheuserfindhisfavoriterestaurantinavarietyofrestaurantlists.Classicalrecommendationalgorithms,suchascollaborativefilteringalgorithms,canbeusedforrestaurantrecommendationsaswell,andmaybehasagoodperformance.Inthisarticle,wedonotusetheclassicalrecommendationalgorithm,instead,wedesignarestaurantrecommendationalgorithmbasedonthetopicmodel.Thealgorithmtakesintoaccounttheuser,sreviewsandlocationinformation,andrecommendtherestauranttotheuseraccordingtotheuser'sreviewsinthepast.Sincethetopicmodelcanprojectrestaurantdatatothelow-dimensiontopicspace,itcanfindthelatentconnectionsbetweenrestaurants,andtoacertainextent,canalsoalleviatetheproblemofdatasparsity.Inaddition,thedistributionofwordsdrawnfromtopicscanprovidegoodexplanationsforrecommendations.Finally,themodelisappliedtotheYelpdatasettorecommendrestaurantsforusers.Andbyexperiments,weprovetheeffectivenessofthealgorithm.Besides,fortheconvenienceofdisplay,Ialsodesignandimplementarecommendationdisplaysystem.Thesystemmakesitpossiblefordataexchangebetweenthefront-endandback-end.Itcanshowuserstherecommendationresultsonthefront-endwebsite.ThesystemusesServletasback-endprogram,andappliesAjaxtoachieveinteractionbetweenfront-endwebsiteandback-enddatabase.,andcallstheBaidumapAPItovisualizethelocationdataofrestaurantsonthemap.Keywords:RecommenderSystem;TopicModel;LDA;RestaurantRecommendation从Web1.0到Web2.0,甚至是到以后的Web3.0,互联网行业的正以人们意想不到的速度蓬勃发展着。这期间,整个IT互联网行业已经发生了天翻地覆的变化,而它也同时给人们的生活带来了日新月异的改变。然而,凡事皆有利弊。由于互联网的飞速发展,在人们享受其所带来的便利的同时.,也需要应付其带来一些不良的“副产物”。信息过载就是这些“副产物”的其中之一。信息过载简单来说就是人们或系统需要处理的信息已经超出了其所能承受的范围。如今,信息量正呈几何级数增长,而这些信息中真正有价值的却不多,甚至还有可能充斥着大量的虚假、冗余信息。而这大大增加了挖掘有价值信息的成本。推荐系统就是一种可以用来应对信息过载问题的工具和策略。推荐系统只关注用户感兴趣的数据,因而可以过滤掉大量无关的数据,这正好迎合了人们从海量数据中获取有价值的信息的需求。特别是随着人工智能的发展,在推荐算法领域新加入的机器学习算法使得推荐系统越来越人性化,推荐质量也变得越来越高。第1章绪论1.l研究背景及意义当今时代科技飞速发展,特别是随着计算机和IT互联网行业的发展,信息量正呈爆炸式的增长。一方面人们享受着信息技术发展所带来的便利,另一方面又在被“信息爆炸”所困扰着。如何从海量信息中挖掘有价值的信息,以及如何剔除大量的垃圾信息成了亟待解决的事情。此外,人们在做决策时往往需要数据来做支撑,大量鱼龙混杂的虚假信息严重干扰了支撑数据的可靠性。人们发现在信息越多的情况下做决策反而越难了。正如哲言所云,少即是多。人们需要的是精简的、可靠的、完整的数据,而不是庞杂的、错误的、缺失的数据。针对上述问题,推荐系统(ReCommenderSystem)应运而生。现有的推荐技术已经有很多,其在现实生活中的应用也是随处可见。但无论哪一种推荐技术,其要解决的根本问题无非就是分类问题,即将用户眼前的信息分为用户感兴趣的和用户不感兴趣的信息两类。分类的方法虽然多种多样,但最重要的是分类的标准和类别。传统的分类过程需要人为地给出分类的标准和分类的类别。而人工分类的过程既昂贵又容易出错。时常会出现分类界限不清晰,分类标准模棱两可等问题。主题模型(TopicModel)就是一种用于挖掘文本中潜在主题的模型。可以用于解决上述问题。将推荐系统应用于餐馆推荐已经不是什么新鲜事了,像国内的美团、大众点评网站都在其网站上设有相应的推荐板块。传统的搜索引擎可以帮助用户查找特定需求下的餐馆信息,但推荐系统可以更进一步地挖掘用户的潜在需求。很多情况下用户无法表达自己的明确需求,这时候就是推荐引擎派上用场的时候了。在考虑选择哪一种推荐算法的时候,首先想到的就是应用最广泛的协同过滤算法。但是协同过滤算法虽然简单高效,但是它却不能有效利用用户的评论信息。考虑到这一点,本次实验利用LDA(LatentDirichletAllocation)主题模型对用户评论数据进行建模,找出用户的潜在主题分类,然后再据此对用户进行餐馆推荐。经评估,该系统在保证较好的推荐准确度的同时,也在一定程度上解决了数据稀疏等问题。1.2 相关研究及现状推荐系统的出现到现在也就不过三十年的时间。虽然时间不长,但是由于互联网和电子商务的发展,推荐系统也由此得到了飞速的发展。虽然现在推荐系统技术已经得到了长足的发展,但是还远未达到可以称作是成熟的程度。一些经典问题,诸如稀疏性和冷启动等问题仍未找到有效的解决方法。周涛曾提到,个性化推荐仍然面临着包括脆弱性、评估难题、数据稀疏性、冷启动、大数据处理、多样性与精确性等十大问题【。而刘鲁等人也提到,在未来推荐系统的研窕方向也将会集中在如何将数据挖掘技术应用于推荐系统、进一步改进推荐算法的性能、以及推荐系统的评价研究等几个方向口叫推荐系统仍有很长的路要走。此外,由于近年来移动终端设备的火热发展。出现了一种基于位置的推荐,它通过分析用户上传的位置信息,分析用户的兴趣,为其推荐用户位置附近的事件。这极大地方便了智能手机用户,因此也成为了学术界关注的热点,预计未来在基于位置做推荐的方向上还将会有更多的成果出现。本文中所做的餐馆推荐也是属于基于位置推荐的一种。随着人工智能的发展,人们开始将目光转向将机器学习算法应用于推荐算法。主题模型是一个在本世纪初被提出来的概率统计模型。它可以用于发现文章中的潜在主题。基于这一点,我们可以不仅仅将主题模型应用于自然语言处理领域。我们可以将对词的统计改为对像素的统计,从而把主题模型应用于图像处理领域。把词的统计改为商品信息的统计,从而可以把主题模型应用于推荐系统等。提到主题模型,通常人们想到的就是LDA,虽然主题模型有很多种模型,但是主题模型真正进入人们的视野恐怕就是要从LDA的提出开

    注意事项

    本文(基于主题模型的餐馆推荐算法分析研究计算机科学与技术专业.docx)为本站会员(王**)主动上传,优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知优知文库(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 yzwku网站版权所有

    经营许可证编号:宁ICP备2022001189号-2

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。优知文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知优知文库网,我们立即给予删除!

    收起
    展开