重难点05一类与斜率和、差、商、积问题的探究(四大题型)(解析版).docx
《重难点05一类与斜率和、差、商、积问题的探究(四大题型)(解析版).docx》由会员分享,可在线阅读,更多相关《重难点05一类与斜率和、差、商、积问题的探究(四大题型)(解析版).docx(31页珍藏版)》请在优知文库上搜索。
1、重难点05一类与斜率和、差、商、积问题的探究【题型归纳目录】题型一X斜率和问题题型二:斜率差问题题型三:斜率积问题题型四:斜率商问题【方法技巧与总结】已知P(XO,典)是双曲线二 a1、已知P(XoJo)是椭版则直线/斜率为定值5.1上的定点,直线/(不过尸点)与双曲线交于4,B两点,且kPA+kPB直线/斜率为定值-3、已知P(Xojo)是抛物线V=2p上的定点,直线/(不过2点)与抛物线交于M,N两点,若kpA+kpB=Q,则直线/斜率为定值-3.V2v24、PaO,打)为椭圆:r+4=l(00)上一定点,过点尸作斜率为勺,乂的两条直线分别与椭圆b交于,N两点.(1)若占+A,=l(20)
2、,则直线MN过定点(%生,-No-也争);a(2)若kk2=MA.工马,则直线MN过定点(“,+”:x。,-,+”:凡).aa-ba-b5、设P(X(PMl)是宜角坐标平面内不同于原点的一定点,过P作两条直线48,CD交椭圆22:5+彳=1(0,60)于/、B、C、D,直线48,CO的斜率分别为k2,弦AB,CO的中点记ab(1)若+=2H0),则直线MN过定点(/一比,一(2)若占=W/4),则直线AZN过定点(J广2,2)aa-h2a-b6、过抛物线/=2px(p0)上任一点P(XOJO)引两条弦21,PB,直线尸彳,PB斜率存在,分别记为k,k?,即攵+左2=2(%工0),则直线48经过
3、定点(XOF,-A【典型例题】题型一:斜率和问题例1.(2023重庆南岸高二重庆市第十一中学校校考期中)己知双曲线E:x2-g.=i30),点尸(-2,-3)在E上.(1)求E的方程;(2)过点Q(0,7)的直线/交E于不同的两点48(均异于点P),求直线RLP8的斜率之和.【解析】将点P(-2,-3)代入双曲线方程可得,-肆=1,b解得人=3,所以,E的方程为V-?=1.(2)由己知易得直线/的斜率一定存在,设斜率为攵,则/的方程为N=H-LX2-Z-=I联立直线与双曲线的方程3,y=kx-整理可得(3-公卜2+2H4=0,3-k20=(2)2+16(3-2)=-12(2-4)O解得-240
4、)上有两点48,且直线48过点(8,0),N4O8=9(T.(1)求抛物线的标准方程;(2)若抛物线上有一点。,纵坐标为4,抛物线上另有两点M,N,且直线OM与ON的斜率满足+v=QqQMN重心的横坐标为4,求直线MN的方程.【解析】(1)由题意知直线AB的斜率不可能为0,设4(西,乂),6(吃J2),直线48的方程为X=即+8,由4403=90*得,OAOB=O,即=电+弘力=,22即在?+M=,即必8+4/=0,2P2P将X=Wy+8代入V=2p,得丁=2p(my+8),贝J-2pzwy-i6p=0,则必2=-16p,贝J4T6P=O,由p0,解得p=4,故所求抛物线的标准方程为/=8x.
5、(2)由抛物线方程可得。点坐标为(2,4),设“优办),(孙乂),.y3-4y4-4-4y4-488_ko.f+knf.=-+=JFJ=+=O则,x325一2(乃)-O(ZIy1%+4乂+4,88则8+%+8=0,且fl则(%)2_(以)2=8卜3_4),乂=x4故七N=2izA=-=-1.又2+,+/=4,3-x4必+居3则再+匕=10,又+居二-8,可得直线MN的中点坐标为(5,-4),故由点斜式得直线MN的方程为y+4=-(x-5),即x+y-l=O.例3.(2023四川巴中高三统考开学考试)已知椭圆C.+g=l(60)的左、右顶点分别为4,4,点M(Is)在椭圆C上,且丽碗=-:求椭圆
6、C的方程;(2)设椭圆C的右焦点为尸,过点尸斜率不为。的直线/交椭圆C于尸,。两点,记直线MP与直线MQ的斜率分别为心内,当人+2=0时,求的面积.【解析】(1)由题意知4(0,0),4(d0),又硝学,则丽=,4_b丹丽=()(一l)(1)+(=一(,解得=2(负值舍去),由(,?在椭圆C上及=2得;+亲=1,解得=3,椭圆C的方程为工+匕=1;43(2)由(1)知,右焦点为尸(1,0),据题意设直线/的方程为X=my+l(m),P(my1+l,y),(my2+1,必),_3_3则/=M=2*-3*二乃一5二2乃一3,加必2m必,2my22my2于是由K+&=。得誓2+U=0,化简得4%必=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 难点 05 一类 斜率 问题 探究 四大 题型 解析