线性映射视角下矩阵的秩.docx
《线性映射视角下矩阵的秩.docx》由会员分享,可在线阅读,更多相关《线性映射视角下矩阵的秩.docx(6页珍藏版)》请在优知文库上搜索。
1、线性映射视角下矩阵的秩安玉莲,罗雪梅(上海外国语大学国际金融贸易学院,上海202220)1引言映射是数学研究的主要对象之一.线性代数主要研究向量空间之间的线性映射(或线性变换).从映射或变换的视角考察线性代数,可以更清晰地认识重要知识点的本质,更深刻地理解矩阵与线性映射之间的关系,为更好地应用线性代数知识提供思想基础与方法矩阵的秩是线性代数教学的难点之一.目前大部分线性代数教材和相关文献中,关于矩阵秩的性质,都是从矩阵本身出发,采用分块的方法,并结合矩阵运算性质和线性方程组解的理论给与证明5-8.文章利用线性映射的知识,对线性代数教材中关于矩阵秩的几个重要命题给出了另一种比较简洁的证明,为该知
2、识点的教学提供一种新的思路和处理方式.2线性变换与矩阵为了方便叙述,文章在实数域内进行研究,但是处理问题的方法对复数域也适用.为方便读者,先给出关于有限维向量空间之间的线性变换与矩阵关系的几个基本概念和相关性质.定义11设n,m分别是n维和m维向量空间,T是从n到m的映射,如果T满足:任意的l,2n,有T(CIl+Q2)=Ta1+TQ2;(ii)任意的n,有T(Na)=NTa,则称T为从n到m的线性变换.特别地,如果n=m,称T为向量空间n上的线性变换.性质11线性变换T:n-m具有下列基本性质:(i)(o)=;(ii)若向量组1,2,as线性相关,则向量组Ta1,Ta2,,Tas也线性相关.
3、一个线性变换T:n-m,会产生两个重要的子空间:像空间与核空间.线性变换T的像集T(n)是Fn的一个子空间,称为线性变换T的像空间.满足T(a)R的全体向量a的集合构成n的一个子空间,称为T的核空间,记为N(T).矩阵与线性变换关系密切.一般地,给定一个矩阵可以定义一个线性变换.任意给定一个矩阵其中a1,a2,an是矩阵A的列向量组,定义线性变换T:nm,Tx=Ax,则对任意的X=(X1,x2,,xn),n,有Tx=Ax=xlal+2a2+xna11,其中(xl,x2,,xn)表示行向量的转置.性质21由矩阵A确定的线性变换T具有下列基本性质:(i)T的像空间是矩阵A的列向量组a1,。2,,a
4、n张成的空间,即T(n)=span(al,a2,,an);(ii)T的核空间是齐次线性方程组AX=O的解空间;(iii)T的核空间维数与像空间维数之和等于n,即dim(N(T)+dim(T(n)=n.记T(1,2,Qn)=(Ta1,Ta2,,Tan),则T(a1,a2,Qn)=(B1,2,,m)Amn,其中任意的X=XIal+x2a2+-+xnann,有Tx=xlTal+x2Ta2+xnTa11=(Ta1,Ta2,,Tan)(xl,x2,xn),=(1,2,m)Amn(xl,x2,,xn),.即TX在基1,2,BnI下的坐标为AnIn(X1,x2,,xn).这表明,任意的xn,其像TX可以由矩
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性 映射 视角 矩阵
![提示](https://www.yzwku.com/images/bang_tan.gif)