等比数列说课稿-.docx
《等比数列说课稿-.docx》由会员分享,可在线阅读,更多相关《等比数列说课稿-.docx(11页珍藏版)》请在优知文库上搜索。
1、2.4等比数列第一课时一、教材分析1 .教材的地位与作用等比数列是人教A版必修五第二章第四节的容,共分两个课时,本节是第一课时.作为本章的重要数列之一,它的主要容包括等比数列的定义,等比数列的通项公式及其推导,以及等比数列通项公式的应用.在此之前,学生已经学习过等差数列等相关知识和类比、函数方程等思想方法,对这些知识也有了直观的熟悉.在这个根底上,从实例出发,通过类比等差数列得出等比数列的相关概念也就水到渠成.等比数列的研究和解决集中表达了研究数列问题的思想和方法,对提升学生猜测、分析、归纳、证实等综合思维水平有着重要的作用.学习等比数列,为学习等比数列前n项和做了相应知识的储藏,并为今后学习
2、根本不等式及其与数列的联系作铺垫,此外,它还为高中三年级进一步学习数列的极限打下根底,具有承上启下的重要作用.2 .知识结构等比数列是一个简单常见的数列,本节课是第一课时,而等比数列的应用是第二课时.研究本节课容可与等差数列进行类比,首先归纳出等比数列的定义及公比的概念,明确等比数列的限定条件,之后推导出通项公式,类比得出通项公式的一般形式(推广),进而研究其图象,再通过类比得出等比中项的定义,最后运用通项公式及其变形、推广等解决实际问题.3.教学目标通过上述教材容分析,考虑到学生已有的认知结构心理特征及原有知识水平,确定本节课教学目标如下:i.知识与技能(1)掌握等比数列的定义,了解公比的概
3、念,明确等比数列的限定条件,会根据定义判断等比数列,以及了解等比中项的概念;(2)理解等比数列通项公式的推导方法,掌握其通项公式,会灵活运用通项公式求等比数列的首项、公比、项数等;(3)会运用通项公式解决某些实际问题.ii.过程与方法(1)在学习知识的过程中,结合例题与练习,进一步熟练理解及掌握等比数列的定义;(2)通过探索等比数列的通项公式及其推导过程与应用,学会观察、猜测、分析、归纳、证实等水平,并能在具体的问题情境中,发现并灵活运用数列的等比关系;(3)通过体会等比数列与等差数列等数学知识之间的联系,学会运用类比、函数方程等思想方法.iii.情感态度与价值观(1)联系生活实例,充分感受等
4、比数列是反映现实生活的模型及其应用的广泛性,体会等比数列是来源于生活实践,并应用于生活实践的,从而提升学习兴趣;(2)在等比数列的探索和证实过程中,体会由特殊到一般的熟悉事物的规律,养成既善于大胆猜测又严谨的科学的态度.4.教学重、难点:根据学生现状及教材容,确立本节课的教学重难点如下:重点:等比数列的定义,等比数列的通项公式.难点:等比数列通项公式的推导,灵活运用通项公式解决实际问题.由于等比数列的定义是根底,而等比数列的性质等相关容都是根据定义与通项公式得出的,由此,等比数列的定义及通项公式的重要性就不言而喻,所以我把等比数列的定义与通项公式定为本节课的教学重点.虽然在等差数列的学习中,学
5、生已接触过不完全归纳法,但他们对不完全归纳法仍然较为不熟悉,而对于叠乘法,学生第一次接触,更是不熟悉,因而在推导过程中,需要学生有一定的观察、分析、猜测、探索、归纳等水平;此外,在不完全归纳法和叠乘法的推导证明过程中,推导证实出的通项公式的适用围是2,N+,因而当=1时,以上推导证实出的通项公式是否成立还须补充说明,这对于学生来说并不是一个简单易解的问题,所以通项公式的推导是难点.由于对等比数列的综合研究离不开通项公式,它在实际生活中的应用广泛,且与函数、三角、几何、不等式等都有广泛的联系,也因此对等比数列通项公式的研究难度就加深,学生要灵活运用它来解决问题实非易事,所以通项公式的灵活运用也是
6、本节课的难点.二、教法分析为了更有效地突出重点,突破难点,本节课我以等比数列定义和通项公式为主线,采用启发式、合作式、探究式及讲练结合的课堂教学方法.启发式、合作式、探究式课堂教学即在教学过程中,启发引导学生以独立自主和合作交流为前提,以“等比数列定义及通项公式”为根本探究容,通过观察问题得出猜测,进而对其进行探究分析,最后得出证实,从而在学习过程中不断强化本节课所学知识.而参照学生现有的的知识和水平,通过提问题及例题讲解与练习稳固的结合,可以激发学生的求知欲,使学生主动参与数学实践活动,并在原有知识水平的根底上,在教师的指导下发现、分析并解决问题.三、学法指导采取个人独立思考、小组合作探究等
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 等比数列 说课稿
