第01讲5.1导数的概念及其几何意义(解析版).docx
《第01讲5.1导数的概念及其几何意义(解析版).docx》由会员分享,可在线阅读,更多相关《第01讲5.1导数的概念及其几何意义(解析版).docx(15页珍藏版)》请在优知文库上搜索。
1、课程标准学习目标初步了解导数概念的背景,掌握平均变化率与瞬时变化率的概念及几何意义。会求函数的平均变率与瞬时变化率。能结合实际问题求曲线在某点处与某点附近点的切线与割线的斜率的极限值。通过本节课的学习,要求会求函数的平均变化率与瞬时变化率.知识点01:函数的平均变化率1、定义:一般地,函数/(X)在区间国,七上的平均变化率为:与三表示为函数/(x)从占到工2的平均变化率,若设x=x2-x1,y=(x2)-(xl)则平均变化率为绿=)(y2)一/(再)=/(,+)一/(XJxx2-xix2、求函数的平均变化率通常用“两步”法:作差:求出Ay=/(吃)一/(/)和=X2一玉y(x1)作商:对所求得
2、的差作商,即/二-xx2-xl【即学即练U(2023全国高二课堂例题)已知函数/(x)=3x+2,g(x)=f,分别计算它们在区间-2,7,1,5上的平均变化率.【答案】3;3;3;6【详解】函数/(x) = 3x + 2在-2,-1上的平均变化率为/2)0(7)+2卜30+2(-1)-(-2)1函数x)=3x+2在1,5上的平均变化率为弋二。)=(3x5+2)-(3xl+2)=3函数g(x)=/在-2,-1上的平均变化率为牛1舁=与=-3.函数g(x)=r在1,5上的平均变化率为乳生型=二1=6.5-143、平均变化率的几何意义yf(x2)-,(x1)平均变化率三,;二如图:表示直线.的斜率
3、。知识点02:函数P=(X)在X=XO处的导数(瞬时变化率)1、定义:函数/(x)在X=x0处瞬时变化率是Iim包=Iim上Ar)二/、。),我们称它为函数y=f(x)x0MrOX在X=XO处的导数,记作r(%)或MEO即/G。尸!吗M=呵voArro【即学即练2(2023全国高二随堂练习)已知函数y=L求自变量X在以下的变化过程中,该函数的平均变化率:自变量X从1变到1.1;(2)自变量X从1变到1.01;(3)自变量X从1变到1.001.估算当x = l时,该函数的瞬时变化率.【答案】(1)10小、100、1000:(2); (3): -1111011001【详解】(1)因为 y = ()
4、 = g,1 1Tj-T_ io.1.1-10.1所以自变量X-S11/(1.01)-(l)_TTT_100,0.01101所以自变量X-翳(3)/(Lool)-/(1)_LoOl一1_I。,1.001-10.0011001所以自变量X-IOOO1001所以可估算当X = I时,y = L的瞬时变化率为-1,证明如下: X而与=/(1+-)-/(1)=占卜高,则於日所以4在X=I处的瞬时变化率为期。%=!色京=T2、定义法求导数步骤:求函数的增量:y=(xo+x)-(xo);求平均变化率:包=/(X。+AY)一x。);xx求极限,得导数U)=M)M=岫Vo+Ay) 一/(%)知识点03:导数的
5、几何意义如图,在曲线V=/()上任取一点Paj(X)P(x,(x),如果当点P(Xj()沿着曲线歹=f()无限趋近于点(%,/(%)时,割线。无限趋近于一个确定的位置,这个确定位置的直线U称为曲线N=/()在点P0P0P的斜率k=【即学即练3(2023高二课时练习)已知函数/a)=/-%,当0时,“I+?-、。;.h【答案】1【详解】因为/(X)=V-X,所以/(1+)-/。)_(l+A)2-(l+p-(12-l)Jh=21hh一一所以当A0时,八?一/1,h故答案为:1知识点04:曲线的切线问题1、在型求切线方程已知:函数/(x)的解析式.计算:函数/(x)在X=X。或者(Xo,/(4)处的
6、切线方程.步骤:第一步:计算切点的纵坐标/(%)(方法:把X=XO代入原函数/(%)中),切点(Xo,/(/).第二步:计算切线斜率左=/).(x0,(x0),切线斜率=/(/)。根据直线的点斜式方程得到切线方程:-/()=(0)(-).【即学即练4】(2023上高二课时练习)已知/(x)=r,求曲线y=(x)在点尸(0,0)处的切线方程.【答案】V=O【详解】根据题意,先由导函数定义求曲线y=()在点尸(0,0)处切线的斜率/(0):当/,0时,力)/(0)=止,2,从而当才趋近于0时,(o)=ynj2=O.因此,曲线y=/在点?(0,()处切线的斜率为0根据在线的点斜式方程为y-0=0(x
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 01 5.1 导数 概念 及其 几何 意义 解析
