函数的单调性与最值及参考答案.docx
《函数的单调性与最值及参考答案.docx》由会员分享,可在线阅读,更多相关《函数的单调性与最值及参考答案.docx(17页珍藏版)》请在优知文库上搜索。
1、函数的单调性与最值镇教财产基固市激活思维1.(人A必一P79例3改)函数T(X)=+:()A.在(0,+8)上单调递增B.在(1,+8)上单调递增C.在(0,1)上单调递减D.在(-8,1)上单调递减22.(人A必一P81例5改)已知函数y=T7(x(2,6),则()A./W的最大值为2,最小值为0.4B./U)的最大值为2,没有最小值C.yu)没有最大值,最小值为0.4D.U)的最大值与最小值都没有3 .已知函数,v=(x)在0,+8)上是减函数,若M=/(J),N=J(a2-a+),则M,N的大小关系为.4 .(人A必一PlOO复习参考题4)已知函数/)=4?一去一8在5,20上具有单调性
2、,则实数k的取值范围为.5 .已知函数y=U)的定义域为(0,+),且7U)在其定义域上单调递减,那么不等式五f)42丫+3)的解集为.基础回归1 .函数的单调性(1)单调函数的定义增函数减函数定义在函数.y=U)的定义域内的一个区间A上,如果对于任意的两个数XI,X2A:当Xl).那么就说函数段)在区间A上当汨42时,都有yu)v)那么就说函数7U)在区间A上是增函数是减函数图象描述自左向右看,图象是上升的自左向右看,图象是下降的(2)单调区间的定义如果函数y=U)在区间A上是增函数或是减函数,那么称A为单调区间.(3)复合函数的单调性对于函数),=火)和=g(x),如果当x(,历时,(如)
3、,且“=g()在区间(,Z?)上和y=/()在区间(加,)上同时具有单调性,那么复合函数y=i(x)在区间(。,力)上具有单调性,并且具有这样的规律:同增异减.2 .若函数火X),g(x)在区间B上具有单调性,则在区间B上具有以下性质:(i)yu)与yu)+qc为常数)具有相同的单调性.(2)段)与4(x),当40时,具有相同的单调性;当40(或S-网)段2)0)例(组在D上单调递增;A(IX2守旦0(或一见一U2)0,得危)的定义域为xX4或xv2.设/=*2x-8,则y=lnf为增函数.要求函数/U)的增区间,即求函数/=$-2r-8的增区间(定义域内).因为函数r=x2-2x-8在(4,
4、+8)上单调递增,在(-8,一2)上单调递减,所以函数7(1)的增区间为(4,+).(2)函数v=L2+2x+1I的增区间是一1一01,+、反+8).【解析】作出函数的图象如图所示,由图象知,其增区间是口一啦,1,l+2,+o).确定函数单调性的四种方法:定义法,导数法,图象法,性质法.Y变式(I)函数yu)=m言的增区间是(B)A.(-8,-1)B.(-U)C.(l,+8)D.(-8,-1),(1,+)【解析】当x0时,段)=一Ly,因为在(-1,0),(0,1)上单调递减,x+LX所以於)在(一1,1)上单调递增,即段)的增区间是(T,1)(2)函数,/U)=-2的减区间是L2_.【解析】
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 调性 参考答案
