三角形中的重要模型-弦图模型、勾股树模型(解析版).docx
《三角形中的重要模型-弦图模型、勾股树模型(解析版).docx》由会员分享,可在线阅读,更多相关《三角形中的重要模型-弦图模型、勾股树模型(解析版).docx(38页珍藏版)》请在优知文库上搜索。
1、三角形中的重要模型弦图模型、勾股树模型赵爽弦图分为内弦图与外弦图,是中国古代数学家赵爽发现,既可以证明勾股定理,也可以以此命题,相关的题目有一定的难度,但解题方法也常常是不唯一的。弦图之美,美在简约,然不失深厚,经典而久远,被誉为“中国数学界的图腾:弦图蕴含的割补思想,数形结合思想、图形变换思想更是课堂教学中数学思想渗透的绝佳载体。一个弦图集合了初中平面几何线与形,位置与数量,方法与思想,小身板,大能量,它就是数学教育里的不老神话。广受数学教师和数学爱好者研究,近年来也成为了各地中考的热点问题。模型1、弦图模型(1)内弦图模型:如图1,在正方形ABC。中,AE_L3尸于点BhLCG于点凡CG工
2、DH于点、G,DHYAE于点“,则有结论:AABE/ABCFQACDGQRDAH、S正方形abco=4Sa日s+S正方形EFG(2)外弦图模型:如图2,在正方形ABCO中,E,F,G,H分别是正方形ABC。各边上的点,且四边形EFGH是正方形,则有结论:AHECFGADGH;S正方形AeCD=45乙eab+S正方形efgh.(3)内外组合型弦图模型:如图3,2S正方形EFGH=S正方形ABCD+S正方形PQMN.例1.(2023秋湖北九年级校联考开学考试)如图,2002年8月在北京召开的国际数学家大会会标其原型是我国古代数学家赵爽的勾股弦图,它是由四个全等的直角三角形拼接而成如.如果大正方形的
3、面积是16,直角三角形的直角边长分别为小b,且/+/=而+o,那么图中小正方形的面积是()【答案】C【分析】根据大正方形的面积即可求得ez,利用勾股定理可以得到a?+/=。?,然后根据(a+/?)?=a2+2ab+b2=c?+勿求得即可求得的值,结合(力一。)?=a2-2ab+b1-C-Iab即可求解.【详解】解:团大正方形的面积是16,0c2=16,0a2+2=c2=16,团M+=H+10,0aZ?=6回小正方形的边长为:b-a,(b-a=a2-2ab+b2=c2-2ab=6-26=4.故选C【点睛】本题考查的是完全平方公式的应用,勾股定理应用,熟记完全平方公式的灵活应用是解题关键.例2.(
4、2022安徽安庆八年级期末)汉代数学家赵爽为了证明勾股定理,构造了一副“弦图”,后人称其为“赵爽弦图”,如图,大正方形ABCQ由四个全等的直角三角形和一个小正方形组成,若NADE=NAED,AD=45,则AADE的面积为()A. 24B. 6C. 25D. 2)【答案】A【分析】由已知得出4。=A石=AB,进而利用图形面积的割补关系解得即可.【详解】解:如图:回MoE=SAEO,AD=AE=AB,(三AEF=0ABF,0F0BE,EF=BF=BEt团GE=AH,画GEM=SJHAM,团MGE=(W/M,GEMHAM(AS4),SHAM=SGEM,SADE=SADH+SDGE,0AD=45,DH
5、=ZAH,AD2=DH2+H2,0AH=4,DH=8,BDG=GE=4,/.5DE=-48+-44=24.故选:A.22【点睛】本题考查了勾股定理,全等三角形的判定与性质正确表示出直角三角形的面积是解题的关键.例3.(2023山西八年级期末)如图,图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,8C=5,将四个直角三角形中的边长为6的直角边分别向外延长一倍,得到图2所示的“数学风车”,则这个风车的外围周长是()SlA. 24B.D. 76【答案】D【分析】由题意0ACB为直角,AD=6,利用勾股定理求得BD的长,进步求得风车的外围周长.【详解】解:依题意
6、由ACB为直角,AD=6, 0CD=6+6=12,由勾股定理得,BD2=BC2+CD2, 0BD2=122+52=169,所以 BD=13,所以数学风车的周长是:(13+6)x4=76.故选:D.【点睛】本题是勾股定理在实际情况中应用,熟练掌握勾股定理是解答本题的关键.在直角三角形中,如果两条直角边分别为a和b,斜边为C,那么a2+b22.例4.(2022杭州九年级月考)我国汉代数学家赵爽为了证明勾股定理,创制了-幅“弦图”,后人称其为“赵爽弦图如图是由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形488,正方形EFGH,正方形MNKT的面积分别为5,S2,S3.若5+S2+S
7、3=12,则下列关于51、S2、5?的说法正确的是()A.S=2B.$2=3C.Ss6D.S+53=8RF【答案】D【分析】根据八个直角三角形全等,四边形ABCDtEFGH,MNKT是正方形,得出CG=NG,CF=DG=NF,再根据三个正方形面积公式列式相加:Si+S2+S.=l2f求出G尸的值,从而可以计算结论即可.【解析】解:八个直角三角形全等,四边形A8CD,EFGH,MNKr是正方形,.CG=NG,CF=DG=NFSi=(CG+DG)2=cg?+DG?+2CGDG=GF?+2CGDG,S2=GF2,S3=(NG-NFy=NG2NF2-2NGNF,+S2+S3=GF2+2CGDG+GF?
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 中的 重要 模型 勾股树 解析