4.3.1等比数列的概念(八大题型).docx
《4.3.1等比数列的概念(八大题型).docx》由会员分享,可在线阅读,更多相关《4.3.1等比数列的概念(八大题型).docx(35页珍藏版)》请在优知文库上搜索。
1、4.3.1等比数列的概念【题型归纳目录】题型一:等比数列的判断题型二:等比数列的通项公式及其应用题型三:等比数列的证明题型四:等比中项及应用题型五:等比数列的实际应用题型六:等比数列通项公式的推广及应用题型七:等比数列性质的应用题型八:灵活设元求解等比数列问题【知识点梳理】知识点一、等比数列的定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q表示(0),即:也=4(q0).an知识点诠释:由于等比数列每一项都可能作分母,故每一项均不为0,因此夕可不能是0;“从第二项起,每一项与它的前一项的比等于同一
2、个常数g”,这里的项具有任意性和有序性,常数是同一个;隐含条件:任一项凡工。且夕HO;“外工0”是数列“成等比数列的必要非充分条件;常数列都是等差数列,但不一定是等比数列.不为。的常数列是公比为1的等比数列;证明一个数列为等比数列,其依据%L=q(eN,夕0).利用这种形式来判定,就便于操作了.an知识点二、等比中项如果三个数4、G、b成等比数列,那么称数G为。与b的等比中项.其中G=旅.知识点诠释:只有当。与人同号即必0时,。与b才有等比中项,且。与b有两个互为相反数的等比中项.当。与人异号或有一个为零即必40时,与6没有等比中项.任意两个实数。与b都有等差中项,且当与。确定时,等差中项C=
3、空辿唯一.但任意两个实数。2与b不一定有等比中项,且当。与b有等比中项时,等比中项不唯一.当成0时,aG。成等比数列=9=2=G?=出?QG=7.aGC?=而是。、G、6成等比数列的必要不充分条件.知识点三、等比数列的通项公式等比数列的通项公式首相为4,公比为夕的等比数列q的通项公式为:推导过程:(1)归纳法:根据等比数列的定义区=q可得/=”闻(2):an-.*.a2=WqA;4=出9=(4夕)夕=aQ1=qq=;=a3q=(ClIqI)q=1g3=14,;当=1时,上式也成立,归纳得出:4=%qi(nwN*,a1f0).(2)叠乘法:根据等比数列的定义&=g可得:an-=q,4=Qa2*=
4、q,。3an-把以上-1个等式的左边与右边分别相乘(叠乘),并化简得:%=gM,即=4t52)又0也符合上式.*.an=aqT(N*,alqO).(3)迭代法:.*.an=a1gT(eN*,aiqO).知识点诠释:通项公式由首项4和公比“完全确定,一旦一个等比数列的首项和公比确定,该等比数列就唯一确定了.通项公式中共涉及4、4、勺四个量,已知其中任意三个量,通过解方程,便可求出第四个量.等比数列的通项公式的推广已知等比数列七中,第相项为乙,公比为夕,则:证明:F=qq0,amaqm-4=arnqf由上可知,等比数列的通项公式可以用数列中的任一项与公比来表示,通项公式%=%q(nwN*,alg0
5、)可以看成是m三=l时的特殊情况.知识点四、等比数列的性质设等比数列&的公比为g若m,n,p,qwN.,且相+=+q,则aman=apalt,特别地,当m+=2p时aman=Qp.下标成等差数列且公差为”的项4,4+2-组成的新数列仍为等比数列,公比为“若为,是项数相同的等比数列,则%、K_1K(一是常数且比0)、)、(mwM,m是常数)、,r也、%也是等比数列;连续2项和(不为零)仍是等比数列.即耳,SVi-Sk,S-S”,成等比数列.知识点五、等比数列中的函数关系等比数列4中,4=4T=21,若设C=幺,则:ancqnqq(1)当/=1时,a.=c,等比数列6)是非零常数列.它的图象是在直
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 4.3 等比数列 概念 八大 题型