2.2.3直线的一般式方程公开课教案教学设计课件资料.docx
《2.2.3直线的一般式方程公开课教案教学设计课件资料.docx》由会员分享,可在线阅读,更多相关《2.2.3直线的一般式方程公开课教案教学设计课件资料.docx(19页珍藏版)》请在优知文库上搜索。
1、2. 2.3直线的一般式方程或课前预习J素养启迪手知识梳理,直线的一般式方程直线的一般式方程关于X,y的二元一次方程Ax+By+C=O(其中A,B不同时为0)叫做直线的一般式方程,简称一般式.(2)二元一次方程的每一组解都可以看成平面直角坐标系中一个点的坐标,这个方程的全体解组成的集合,就是坐标满足二元一次方程的全体点的集合,这些点的集合组成一条直线.在平面直角坐标系中,任意一个二元一次方程是直角坐标平面上一条确定的直线;反之,直角坐标平面上的任意一条直线可以用一个确定的二元一次方程表示.叁预习自测,1 .过点(T,3)且平行于直线x-2y+3=0的直线方程为(八)A.-2y+7=0B.2x+
2、y-l=0C.-2y-5=0D.2x+y-5=0解析:设与直线-2y3=0平行的直线是-2y+c=0(c3),代入点(-1,3)得T-6+c=0,得c=7,所以直线方程是x-2y+7=0.2.若方程Ax+By+C=O表示直线,则A,B应满足的条件为(D)A.A0B.B0C.AB0D.A2+B2O解析:A,B不能同时为0,则A2+B20.3 .若bc0,则直线ax+byc=0的图象只能是(D)解析:由题意,b0,将方程axby+c=0转化为尸-9一三易知OD4 .(多选题)(2022云南昆明高二期中)已知直线1:x+y-2-a=0在X轴和y轴上的截距相等,则a的值可以是(ABCD)A.0B.1C
3、.-lD.-2解析:令尸0,得到直线在X轴上的截距是2+a,令x=0,得到直线在y轴上的截距为2+a,所以不论a为何值,直线1在X轴和y轴上的截距总相等.5 .已知mR,直线1:mx-y+l-2m=0过定点Q,则点Q的坐标是若点P(3,2),当直线PQ与直线1的夹角为15。时,m的值为解析:l:mx-y+l-2m=0变形为y-l=m(-2),故过定点Q(2,1),直线PQ:F=*,即x-y-l=0,直线PQ的斜率为1,倾斜角为45,所以直线1的倾斜角为30或60,所以m=tan30o=g或m=tan60o-y3.答案:(2,1)/或5豌课堂探究二素养培育好探究点一,求直线的一般式方程例1根据下
4、列条件分别写出直线的方程,并化为一般式方程.斜率是3,且经过点A(5,3);斜率为4,在y轴上的截距为-2;经过A(T,5),B(2,T)两点;(4)在X轴、y轴上的截距分别是-3,T.解:(1)由点斜式方程可知,所求直线方程为丫-3二百-5),化为一般式方程为V3-y+3-5V3=0.由斜截式方程可知,所求直线方程为y=4-2,化为一般式方程为4-y-2=0.由两点式方程可知,所求直线方程为胃二2,一1-52-Ll)化为一般式方程为2x+y-3=0.(4)由截距式方程可得,所求直线方程为彳+-1,-3-1化为一般式方程为x+3y+3=0.g方法总结求直线方程时,要求将方程化为一般式方程,其形
5、式一般作如下设定:X的系数为正;系数及常数项一般不出现分数;一般按含X项、含y项、常数项顺序排列.易错警示要注意斜率不存在或者为0时的情况.针对训练根据下列条件分别写出直线的方程.经过两点A(5,7),B(l,3);经过点(-4,3),斜率为-3;经过点(2,1),平行于y轴;(4)斜率为2,在X轴上的截距为1.解:(1)由两点式方程得分二分,即-y2=0.(2)由点斜式方程得y-3=-3(x4),即3xy+9=0.(3)由题意知x=2,即-2=0.(4)由点斜式得y=2(-l),即2x-y-2-0.好探究点二J直线方程几种形式的相互转化及其应用例2设直线1的方程为2x+(k-3)y-2k+6
6、=0(k3),若直线1的斜率为-1,则k=;若直线1在X轴、y轴上的截距之和等于0,则k=.解析:因为直线1的斜率存在,所以直线1的方程可化为y=-2,kS由题意得-W=T,解得k=5直线1的方程可化为三+白1,k-32由题意得k-3+2=0,解得k=l.答案:51g方法总结(1)直线的一般式方程Ax+ByC=O中要求A,B不同时为0.由直线的点斜式、斜截式、两点式、截距式方程去分母、移项就可以转化为直线的一般式方程(化为一般式方程后原方程的限制条件就消失了);反过来,也可以由直线的一般式方程化为斜截式、截距式方程,注意斜截式、截距式方程的适用条件.解决与图象有关的问题时,常通过把直线的一般式
7、方程化为斜截式,利用直线的斜率和在y轴上的截距作出判断.针对训练设直线1的方程为(al)xy2-a=0(aR),若1不经过第二象限,则实数a的取值范围是.解析:将直线1的方程化为y=-(a+l)x+a-2,财0,或=0,所以WL(Q-203一20,答案:(-8,-1后探究点三J由直线的位置关系求方程例3已知直线1的方程为3x+4yT2R,求直线的方程,使1满足:(1)过点(7,3),且与1平行;过点(-1,3),且与1垂直;(3)1与1垂直,且1与两坐标轴围成的三角形面积为4.解:(1)法一1的方程可化为y二-9+3,4所以1的斜率为-未4因为1与1平行,所以r的斜率为-未4又1过点(-1,3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2.2 直线 一般 方程 公开 教案 教学 设计 课件 资料