专题07 解三角形(面积问题(含定值最值范围问题))(典型例题+题型归类练)(解析版).docx
《专题07 解三角形(面积问题(含定值最值范围问题))(典型例题+题型归类练)(解析版).docx》由会员分享,可在线阅读,更多相关《专题07 解三角形(面积问题(含定值最值范围问题))(典型例题+题型归类练)(解析版).docx(15页珍藏版)》请在优知文库上搜索。
1、专题07解三角形(面积问题(含定值,最值,范围问题)(典型例题+题型归类练)一、必备秘籍基本公式1、正弦定理及其变形=-=2?(R为三角形外接圆半径)sinAsinBsinC(1)a=2RsinA,b=2RsinB,c=2RsinC(边化角公式)(2)sinA=,sinB=,sinC=(角化边公式)2R2R2Ra:b:c=sinAisinBisinC基本公式2、余弦定理及其推论a2=b2+c2-2hccosAC、222dq+c-b2=a2+c2-2accosB=CoSB=2acc2=a2+b2-2abcosC。2+力2_2cosC=2ab基本公式3、常用的三角形面积公式(1) Smbc=5X底
2、X高;(2) Sbc=absinC=bcsinA=casinB(两边夹一角);核心秘籍1、基本不等式而三c+2核心秘籍2:利用正弦定理化角(如求三角形面积取值范围,优先考虑化角求范围)利用正弦定理”=2HSinA,b=2RsinB,代入面积公式,化角,再结合辅助角公式,根据角的取值范围,求面积的取值范围.二、典型例题角度1:求三角形面积(定值问题)例题L(2022陕西省安康中学高二期末(理)在“Be中,(2b-6c)cosA=GaCOSC.(1)求NA的大小;(2)若C=J,a=2,求的面积.【答案】NA=J(2)6O(1)解:因为(2b-6c)cosA=GcosC,由正弦定理可得2sin6c
3、osA-bSinCCoSA=QSinACOSC,即2sinBcosA=百(sinAcosC+cosAsinC)=3sm(A+C)=3sinB,又在“IBC中,SinBwO,所以COSA=且,e(0,),所以4=勺;26(2)解:由余弦定理得CoSA=史士4,即F+3b=立,2bc2h2解得6=2,所以c=2jj,又SinA=所以S=Ucsin4=L2x2GXL=6:.222角度2:求三角形面积(最值问题,优先推荐基本不等式)例题2.(2022青海海东市第一中学模拟预测(文)在aA8C中,角A8,C的对边分别为4,Zc,a2-b2+bc=ccosB.(D求角4,若加inA=VJsinB,求面积的
4、最大值.【答案】(I)A = ?(1)由/一6+1bc=ccos8,可得+_Lbc,+c2-a2=bc则22ac2CoSA=Xd2bc2由于0O,则=6,则a2=b2+c2-2ccosA=b2+c2-bc2bc-be,(当且仅当力=C时等号成立),则於3,(当且仅当方=C=G时等号成立),则Sf=gbcsinAg3等=手,即“IBC面积的最大值为空.4角度3:求三角形面积(范围问题,优先推荐正弦定理化角)例题3.(2022黑龙江哈师大附中高一期中)在锐角中,内角A,8,C的对边分别为,c,向量;=(,c),n=(acosA,b-a),满足正/而.(1)求角C的值:(2)若c=L求aA8C的面积
5、的取值范围.【答案】(I)C=A(2)日,手(l).mw*c(h-a)=cacosA,t:a0,.,.b-a=ccosA,由正弦定理得sinCcosA=Sin8-gSinA=sin(A+Q-sinA,可得SinCCoSA=SinACOsC+cosAsinC-BSin4,即SinACOSC=BSin4,1JTItlsinAHO,可得CoSC=由C(0,4),可得C=.(2)因为c=5,C=5,A+8=8=-A,a_bCg由止弦定理得SinAsinBsinCt,sin一3/.a=2sinA,b=2sin5,C1.e,ABC=s11y=亨ab=y3sinA-sinB=3sinAsin(-A)=3si
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题07 解三角形面积问题含定值,最值,范围问题典型例题+题型归类练解析版 专题 07 三角形 面积 问题 含定值 范围 典型 例题 题型 归类 解析