基于深度学习的交通灯识别方法研究.docx
《基于深度学习的交通灯识别方法研究.docx》由会员分享,可在线阅读,更多相关《基于深度学习的交通灯识别方法研究.docx(36页珍藏版)》请在优知文库上搜索。
1、交通灯识别在智能交通系统中具有重要的应用价值,随着大数据、5G、人工智能等技术的飞速发展,智能驾驶技术也开始应用于实际。交通信号灯检测与识别技术作为智能驾驶领域的核心技术之一,其检测精度与检测速度极其重要。因此,研究基于深度学习的交通信号灯检测与识别方法对于交通道路安全有着重要的研究意义。本研究旨在解决交通灯识别问题,并提出了一种基于深度学习YOLOV7模型的改进方法,通过在网络中加入CBAM(ConvolutionalBlockAttentionModule)11lJ,提高了交通灯的识别精度的方法。本研究首先指出了交通灯识别的重要性和挑战,并明确了研究目的。随后详细介绍了YoLoV7算法的原
2、理和特点,包括卷积层、池化层、激活函数、全连接层等核心组件。同时,对数据增强方法和训练用的数据集进行了介绍,旨在提高模型的性能和泛化能力。实验结果显示改进后的方法在分类的精确性和速度上都有所提高。该研究为交通灯识别方法的改进和优化提供了有益的参考。关键词:深度学习;交通灯识别;CBAM;YOLOv7AbstractTrafficlightrecognitionhasimportantapplicationvalueinintelligenttransportationsystem,withtherapiddevelopmentofbigdata,5G,artificialintelligenc
3、eandothertechnologies,intelligentdrivingtechnologyhasalsobeguntobeappliedinpractice.Trafficlightdetectionandrecognitiontechnologyisoneofthecoretechnologiesinthefieldofintelligentdriving,itsdetectionaccuracyanddetectionspeedarealsoextremelyimportant.Therefore,thestudyoftrafficsignaldetectionandrecogn
4、itionmethodsbasedondeeplearninghasimportantresearchsignificancefortrafficroadsafety.Thisresearchaimstosolvetheproblemoftrafficlightrecognition,andproposesanimprovedmethodbasedondeepIearningY0L0V7model,whichimprovestherecognitionaccuracyoftrafficlightsbyaddingCBAM(ConvolutionalBlockAttentionModule)at
5、tentionmechanismtothenetwork.Firstly,theresearchbackgroundandpurposeareintroduced,andtheimportanceandchallengeoftrafficlightrecognitionareclarified.Then,theprincipleandcharacteristicsofY0L0v7algorithmaredescribedindetail,includingthekeycomponentssuchasconvolutionlayer,poolinglayer,activationfunction
6、andfullyconnectedlayer.Then,dataenhancementmethodsanddatasetsfortrainingareintroducedtoimprovetheperformanceandgeneralizationabilityofthemodel.Throughexperiments,theexperimentalresultsshowthattheaccuracyandspeedofclassificationareimproved.Thisstudyprovidesausefulreferencefortheimprovementandoptimiza
7、tionoftrafficlightrecognitionmethods.KeyWords:Deeplearning;Trafficlightrecognition;CBAM;Y0L0v7摘要1Abstract2第1章绪论11.1 研究背景及意义11.2 国内外研究现状及发展趋势11.2.1 传统交通灯检测算法11.2.2 基于深度学习的交通灯检测算法213研究内容31.4 研究方法31.5 主要工作和组织架构4第2章交通信号灯检测与识别方法技术分析62.1 相关理论和算法62.1.1 深度学习62.1.2 卷积神经网络(CNN)62.1.3 YoLC)V7算法72.2 卷积神经网络72.2.
8、1 卷积层72.2.2 池化层82.2.3 激活函数92.2.4 全连接层102.2.5 前向传播与反向传播H2.2.6 参数共享和稀疏连接112.2 数据集介绍122.3 数据增强方法13第3章改进YOLOv7的交通灯检测模型143.1 YOLOv7网络143.2 YOLOv7网络的优化结构153.2.1 高效扩展聚合网络153.2.2 重参数化卷积163.2.3 损失函数改进173.3 CBAM注意力机制173.4 引入CABM的Y0L0v7检测模型19第4章仿真实验与结果分析214.1 实验环境214.2 YOLOv7与CBAM-YOLOv7模型对比试验与性能分析214.2.1 数据集测
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 深度 学习 交通灯 识别 方法 研究