增材制造知识介绍.docx
《增材制造知识介绍.docx》由会员分享,可在线阅读,更多相关《增材制造知识介绍.docx(13页珍藏版)》请在优知文库上搜索。
1、增材制造知识介绍1增材制造的基本原理增材制造(AdditiveManufacturing,AM)利用计算机控制3D数据逐层堆积材料,是基于离散一堆积原理的高效净成形技术。自21世纪以来,增材制造以其独特的优势为制造业开辟了一个新的先进制造技术,被众多国家视为未来产业发展的新增长点,是工业4.0的核心,是具有深刻变革意义的新型生产方式。增材制造技术所具有的数字化、网络化、个性化和定制化等特点,其将成为引领企业智能制造与创新发展的重要方式,是企业制胜工业4.0时代的重要法宝。在20世纪90年代增材制造技术发展的初期,增材制造技术被称为“快速原型制造技术”,研究学者主要基于该技术制备非金属原型,通过
2、后续工艺实现金属零件的制备。具有代表性的工艺主要包括立体光造型(StereOlithography,SLA)、叠层制造(laminatedobjectmanufacturing,LOM)熔融沉积成形(fuseddepositionmodeling,FDM)三维喷印(three-dimensionalprinting,3DP)等。激光选区烧结技术(selectivelasersintering,SLS)利用激光束扫描照射包覆有机胶黏剂的金属粉末,获得具有金属骨架的零件原型,通过后续的高温烧结等后处理方式获得相对致密的金属零件。随着大功率激光器的逐步应用,SLS技术随之发展为激光选区熔化技术(se
3、lectivelasermelting,SLM),该技术利用高能量密度的激光束照射预先铺覆好的金属粉末材料,将其直接熔化并凝固、成形,获得金属制件。通过SLM技术可以成形接近全致密的精细金属零件,其性能可达到同质锻件水平,高性能金属零件的直接制造是增材制造技术由“快速原型”向“快速制造”转变的重要标志之一。在SLM技术发展的同时,另一种金属零件直接制造技术,激光沉积制造技术(laserdepositionmanufacturing,LDM)等高性能金属零件直接制造技术及设备涌现出来。LDM技术起源于美国Sandia国家实验室的激光近净成形技术(laserengineeringnetshapin
4、g,LENS),利用高能量激光束将同轴或旁轴喷射的金属粉末直接熔化,并按照预定的轨迹逐层堆积凝固成形,获得尺寸形状接近于最终零件的“近形”坯料制件,经过后续的小余量加工及后处理获得最终的金属零件。SLM和LDM技术作为金属增材制造的两种主要方式,是当前研究的热点内容,其在结构复杂、材料昂贵、小批量定制生产方面具有低成本、高效率、高质量的突出优势,在航空航天等高端制造领域实现了较为广泛的应用。在SLM工艺中,选区激光熔化以激光为热源,根据离散的三维数据逐点扫描熔化粉床上的金属粉末,逐层凝固叠加,实现零件成形,具体过程如图1所示。聚焦激光束在振镜作用下,根据分层切片离散化的零件三维数字模型,逐点扫
5、描粉床上的金属粉层,扫描后熔化凝固的金属粉末形成单层成形面及轮廓。随后基板下降,送粉仓上升,粉末在刮刀作用下平铺到粉床上,激光继续开始扫描,熔化下一层,与上一层融为一体。如此重复,层层叠加,得到与三维实体模型相同的金属零件,完成三维实体的成形。为保证铺粉顺利和粉床的稳定,一般情况下,选区激光熔化的成形平台均为水平面,而在竖直方向通过逐层叠加累积成形。图1典型双缸SLM工艺成形过程示意图SLM技术采用的粉末主要为气雾化球形粉,粒径1050um,加工的层厚为2050um0激光聚焦直径小,熔池特征尺寸约为IOoUm,其成形精度约为0.050.10mm,表面粗糙度1020um,可以满足大多无装配表面要
6、求的金属零件的高精度快速制造,也是目前精度最高的金属增材制造工艺之一。较高的成形精度使得SLM工艺适用于加工形状复杂的零件,尤其是具有复杂内腔结构和具有个性化需求的零件。目前,国外的EOS、SLMSolutionsConceptLaSer等公司以及国内的伯力特、华曙高科等公司生产的SLM设备已经成功为航空航天、汽车、医学生物等领域定制生产个性化零部件。LDM设备主要由激光系统(激光器及其光路系统)、运动执行机构、送粉系统、气氛保护系统、质量调控系统、在线监测反馈系统及控制系统等模块构成,系统整体构成和布局如图2所示。图2LDM工艺成形过程示意图LDM技术利用激光束作为热源,通过送粉系统将金属粉
7、末送入熔池,控制系统及软件将三维实体模型按一定厚度分层切片,并在数控系统的控制下按照规定的运动轨迹及工艺参数来控制伺服系统运动,伺服系统带动激光头或是工作台运动。根据沉积材料的不同,整个成形过程通常需要在氨气等惰性气体氛围内进行,对于活性较高的合金材料,需要动态惰性密封箱体保护的方式持续性地提供惰性气体保护氛围。同样,通过逐层沉积的方式,最终形成三维实体零件。原则上也可以采用同步丝材送进的方式来成形零件。LDM技术的主要特点为:成形尺寸不受限制,可实现大尺寸零件的直接成形;灵活性较高,无需支撑即可加工复杂零件;可用于受损零件的直接修复及梯度零件的制造;成形件的综合力学性能优异,热处理后的零件力
8、学性能可达到同质锻件水平。但其成形后零件依然需要少量的机械加工,成形精度较SLM工艺低。目前,国外的AerOMet、OptomecROllS-ROyCe等公司,国内的北京航空航天大学、西北工业大学、沈阳航空航天大学、北京鑫精合、南京煜宸等企业及院校已经在航空、航天、船舶、能源等领域就LDM技术进行了大量的成功应用及示范推广。2增材制造关键技术无论SLM技术还是LDM技术,控制成形件内部的残余应力及成形零件的整体变形都是增材制造亟须解决的关键技术。残余应力是无外力作用时,以平衡状态残留于材料内部的应力。激光增材制造具有加热、冷却速度极快的特点,在激光增材制造加热过程中,不同部位温度不同,熔化不同
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 制造 知识 介绍