人工智能如何超越数据藩篱.docx
《人工智能如何超越数据藩篱.docx》由会员分享,可在线阅读,更多相关《人工智能如何超越数据藩篱.docx(8页珍藏版)》请在优知文库上搜索。
1、人工智能如何超越数据藩篱没有人知道人工智能(ArtificialIntelIigence,Al)将如何改变世界,原因之一在于,没有人真正了解这些Al的内部运作方式。一些Al系统具备的能力远远超出了它们所受训练的范围就连它们的发明者也对此感到困惑。研究人员也在想尽办法理解,为什么大语言模型能够掌握那些没人告诉过它们的知识。越来越多的测试表明,这些Al系统就像我们人类的大脑一样,在自己的内部构建出了现实世界的模型尽管它们达成的方式和我们的不同。Al是鹦鹉学舌吗美国布朗大学的埃莉帕夫利克是致力于填补这一空白的研究人员之一。帕夫利克表示:“如果我们不了解它们是如何运作的,任何想要优化人工智能、使它变得
2、更安全或者类似的行为,对我来说都是很荒谬的。”从某种程度上说,帕夫利克和她的同事对“基于生成式预训练模型”(GeneratiVePre-trainedTransformer,GPT)和其他类型的大型语言模型(LLM)了解得一清二楚。这些模型都依赖于一种名为“神经网络”的机器学习系统它的结构大致仿照了人脑的神经元连接。用于构建神经网络的程序代码相对简单,仅占几个屏幕的篇幅就能建立起一种可自动更正的算法。这种算法可以统计分析数百GB的互联网文本,再挑选出最有可能的单词,由此生成一段内容。一些额外训练还能确保系统以对话的形式呈现结果。从这个意义上说,它所做的只是重复所学到的内容用美国华盛顿大学语言学
3、家埃米莉本德的话来说,这就是一只“随机鹦鹉”O这并不是诋毁已故的非洲灰鹦鹉亚历克斯,它能够理解诸如颜色、形状和面包等概念,并且会有意地使用相应的词语。不过,LLM也通过了律师资格考试,并就希格斯玻色子写了一首十四行诗,甚至还试图破坏用户的婚姻。鲜有人预料到,一个相当简单的自动更正算法可以具备如此广泛的能力。此外,GPT和其他Al系统还能执行未经训练的任务,因而会产生一些“涌现能力,(EmergentAbiIities,随模型规模增大而不可预测地出现的能力)。这一点甚至让那些对LLM过度宣传普遍持怀疑态度的研究人员也感到惊讶。美国圣菲研究所的Al研究员梅拉妮米切尔表示:“我不知道它们是如何做到的
4、,也不知道它们能否像人类那样在更普遍意义上做到这一点,但现在的情况已经挑战了我的观点。”加拿大蒙特利尔大学的Al研究员约书亚本希奥说:“它肯定比随机鹦鹉要强得多,并且确实构建出了一些关于现实世界的内部表征尽管我认为这和人类脑中构建世界模型的方式不大相同。”涌现能力今年3月,在美国纽约大学举办的一场会议上,美国哥伦比亚大学的哲学家拉斐尔米利埃展示了LLM另一个令人瞠目结舌的能力。我们已经知道这些模型具备令人印象深刻的写代码能力,但由于网上有太多的代码可以模仿,所以不足为奇。相比之下,米利埃更进一步证明,GPT也有执行代码的能力。这位哲学家输入了一个用于计算斐波那契数列中第83个数字的程序。“执行
5、这套程序需要非常高级的多步推理,”他说。尽管Al聊天机器人似乎本不应该能够实现此类操作,但它却成功了。不过,当米利埃直接问它第83个斐波那契数是多少时,它却答错了。这样看来,它不仅仅是一只“随机鹦鹉”、只能根据见过的数据输出答案,而是可以通过执行运算来得出答案。尽管LLM是在计算机上运行的,但它本身并不是计算机。因为它缺乏必要的计算元素,比如工作记忆(对信息进行短时存储和加工的记忆系统)。GPT被默认自身无法运行代码,对此它的发明者科技公司OPenAl推出了一个专门的插件,以便使生成式预训练聊天机器人可以在回答问题时使用这种工具来运行代码。不过,米利埃展示的工作并没有使用这种插件。相反,他猜测
6、GPT可以利用它根据上下文解释单词的能力,临时创建一种记忆这种行为很像自然界中的生物如何将现有能力重新用于实现新功能一样。这种可以临时产生记忆的能力表明,LLM发展出了远超出简单统计分析的内部复杂性。研究人员发现,这些系统似乎能够真正理解它们所学的内容。在今年5月举办的国际表征学习大会上,美国哈佛大学的博士生肯尼思李和他的同事报告了一项研究,他们搭建了一个较小的GPT神经网络,以便研究其内部运作。通过以文本形式输入棋子走法,他们对它进行了数百万场黑白棋(OthelIo)的比赛训练,从而使他们的模型成为一名近乎完美的玩家。为了研究神经网络如何编码信息,他们采用了来自蒙特利尔大学的本希奥和纪尧姆阿
7、兰于2016年开发的一项技术。他们创建了一种微型“探针”网络来逐层分析主网络。肯尼思李认为这好比神经科学中的方法,“就像把探针放入人脑一样。”就肯尼思李等人训练的Al模型而言,探针显示它的“神经活动”与一场黑白棋游戏的表征相匹配,不过是以卷积的形式存在。为了证实这一点,研究人员在将信息植入网络时反向运行探针,例如,将棋盘游戏中的一枚黑棋翻转成白棋。肯尼思李表示:“从根本上说,我们侵入了这些语言模型的大脑。”结果显示,神经网络据此调整了自己的行为。研究人员推断,它在玩黑白棋时与人类大致相同:在“脑海”中想象一个棋盘,并使用这个模型来评估可走的棋步。肯尼思李认为,系统之所以能够学会这项技能,是因为
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人工智能 如何 超越 数据 藩篱