12.4 复数的三角形式(分层练习) 试卷及答案.docx
《12.4 复数的三角形式(分层练习) 试卷及答案.docx》由会员分享,可在线阅读,更多相关《12.4 复数的三角形式(分层练习) 试卷及答案.docx(29页珍藏版)》请在优知文库上搜索。
1、第12章复数12.4复数的三角形式精选练习基础篇一、单选题1. (2022春江西南昌高一南昌县莲塘第中学校考期中)复数(Sinl00+icos 10。)(Sinl00+icos 10。)的三角形式是()A. sin 30o + icos 30B. cos 160oisin 1600C. cos 30o + isin 30D. sin 160o + icos 1602. (2022春新疆巴音郭楞高校考期末)任意复数z = +比(。、bR, i为虚数单位)都可以写成 z = r(cos9+isin6)Mm,其中r = 77,F(O。 2乃)该形式为复数的三角形式,其中6称为第数的辐角主值.若复数z
2、 = 3 + U,则Z的辐角主值为() 2 2 A.-6b 7C包 ,3d3. (2022春黑龙江绥化高一校考期末)已知(l-ipz = 3+2i,则2:=()1 3.3.3 .3A. -1 1B. -l + -iC.+ iD.22224. (2022春甘肃金昌高一永昌县第一高级中学校考期末)已知z = 2-i,则z(3+i)=()A.6-2iB.4-2iC.62iD.4+2i5. (2021春广东惠州高一校联考期中)已知Z = (I 后卜卜CoSe+ isinj, MaFgZ=()C九一2兀C5A.-B.-C.D.32366. (2022春广东广州高一广东实验中学校考期中)复数Z = CoS
3、(-J + isin(-会)的辐角主值为()8C8一 2、2A. B.C. D.55557. (2022春北京大兴高一统考期中)在复平面内,复数的共辄更数对应的点位于 I-ZB.第二象限A.第一象限C.第三象限D.第四象限8. (2021春江苏苏州高一统考期中)欧拉是瑞士著名数学家,他首先发现:*=cosO+isinJ 为自然 对数的底数,i为虚数单位),此结论被称为“欧拉公式”,它将指数函数的定义域扩大到复数集,建立了三 角函数和指数函数的关系.根据欧拉公式可知,e=()A. 1B. 0C. -1D. 1 + Z二、多选题9. (2021春江苏南京高一南京市第二十九中学校考期末)欧拉公式*=
4、8s0 + isin6 (其中i是虚数单位, 0R)是由瑞典著名数学家欧拉创立的,该公式将指数函数的定义域扩大到复数,建立了三角函数与指数 函数的关联,在复变函数论里面占有非常重要的地位,被誉为数学中的天骄,依据欧拉公式,下列选项正 确的是()A,复数/对应的点位于第一象限B.复数士的模长等于立1 + i2C. *为纯虚数D.尚苧+ = o10. (2022春福建莆田高一莆田一中校考期中)已知i为虚数单位,若Zl=MCOSg+isinq),z2 =/;(cosft +isin),,zn = ,(cos isin),则Z1Z2 Zn = rxr2 fcos(9,+ +)isin(91+ + +劣
5、).特别地,如果2 = z2 = = zn =r(cos + isin),那么r(8se+isin。) = (CoS夕+ isin。),这就是法国数学家棣莫佛 (16671754年)创立的棣莫佛定理.根据上述公式,可判断下列命题箝误的是()A.若Z = COS2+ isin2,则/二 一2+且i 662 2B.若Z=COSq+ isin?,贝Jz5=l + i一 . J 7万.l J . . 1 ril /C. zl =21 cos +1 sin I, z2 =31 cos- + sn-j-1, 则 zZ2=6 + 6,.23万.23.( 兀.兀、 rrD. =31 cos-一sn-p-I,
6、z2 =41 cos + sn-I,则 z1 z2 =63-6i 三、填空题II.(2022春广西钦州高一校考期末)arg(-l-i)=.2 212. (2022春安徽合肥高一合肥市第八中学校考期中)写出复数z = 6 + i的三角形式是.(辐角 0,2)13. (2022春上海嘉定高一校考期末)复数的三角形式cos + isin1的辐角主值为.14. (2022春上海闵行高一校考期末)若复数z = -6+i(i为虚数单位),则argz=.四、解答题15. 将下列复数化为三角形式:(l)-3+i;(2)-l-3i;(3)-21 COSy+ sny I ;(4)21 Siny+ ICOSy I.
7、16. 计算下列各式:l,( 4zr . . 4 ( 5乃.( )16 cos + sn4 cos + sn:I 33 J I 66 Jt(2)3(s 20 +isin20 )12 (cos 50 +isin50 ) 10 (cos 80 +isin80 );(3)(-l + i) 可CoS子+ isin?).17. 已知复数z=i(l-i)3.(1)求argz及IZll ;(2)当复数Z满足IZI = L求z-zj的最大值.18. (2021春.广东茂名.高一统考期末)已知A(1,1), 3(肛2), C(-2,3), 0(-1,)是复平面上的四个点,其中小,wR,且向量BC,4。对应的复数



- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 12.4 复数的三角形式分层练习 试卷及答案 复数 三角 形式 分层 练习 试卷 答案
