学案三角函数概念.docx
《学案三角函数概念.docx》由会员分享,可在线阅读,更多相关《学案三角函数概念.docx(45页珍藏版)》请在优知文库上搜索。
1、三角函数概念7. 2.1任意角的三角函数【第一课时】任意角的三角函数(一)【教学目标】1 .借助圆理解任意角的三角函数定义。2 .能利用求值,判断正弦、余弦、正切函数值在各象限内的符号。【教学重难点】1 .借助圆理解任意角的三角函数定义。2 .能利用求值,判断正弦、余弦、正切函数值在各象限内的符号。【教学过程】一、情境引入如图所示是光明游乐场的一个摩天轮示意图,它的中心离地面的高度为如,它的直径为2R,逆时针方向匀速运动,转动一周需要360秒。问题(1)若现在你坐在座舱中,从初始位置OA出发,过了30秒后,你离地面的高度力为多少?过了45秒呢?过了f秒呢?(2)如图所示建立直角坐标系,设点Pa
2、P,),你能用直角坐标系中角的终边上的点的坐标来表示锐角。的正弦函数的定义吗?能否也定义其他函数(余弦、正切)?改变终边上的点的位置,这三个比值会改变吗?提示(1)30秒时h=1u)+Rsin30o=fo+7?;45秒时h=ho+Rsin45o,t秒时z=zo+Rsin产。(2)能,sina=yptCOSa=XP,tana=甘,改变终边上点的位置,比值不会改变。二、新知初探1 .任意角的三角函数的定义一般地,对任意角a,在平面直角坐标系中,设。的终边上异于原点的任意一点P的坐标为(,y),它与原点距离是r,则=这五;此时,点P是角。的终边与半径为一的圆的交点。(如图)贝(I:(1)比值料做a的
3、正弦,记作Sina,即Sina=j(3)比值)(x0)叫做a的正切,记作tana,即tana=;(x0)o2 .三角函数对于每一个实数a,都有唯一实数Sina与a对应,故Sina是a的函数,同理CoSa也是Jra的函数;当aE+awZ)时,tana也是a的函数;则sin。、COSa、tana分别叫做a的正弦函数、余弦函数、正切函数;以上三种函数统称为。的三角函数。3 .三角函数值在各象限的符号口诀概括为:一全正、二正弦、三正切、四余弦(如图)。yy+-OX-O_sinacosa拓展深化微判断1 .角的三角函数值随终边上点的位置变化而变化。(X)提示角的三角函数值与点在终边上的位置无关。2 .若
4、角Q终边过点(1,3),则Sin。=理/。3)3 .终边在无轴上的角的正切值不存在。()提示终边在y轴上的角的正切值不存在。4 .若Sinacos0,则角为第一象限角。(x)提示sincosa0,则Sin,COSa同号,则为第一、三象限角。5 .sin0,则为第一、二象限角。()提示的终边位于第一、二象限或y轴正半轴。微训练1 .若=,贝Ucos=oO解析cosQ=坐。3答案M2 .tan-y的符号为。解析y=4-,即事是第四象限角,所以tarN).答案负3 .已知角的终边经过点(3,4),贝!jsin+cos1的值为。,431解析易知r=N32+(4)2=5,所以Sina=-亍COSQ=5,
5、故Sina+coso=-石田1答案一534 .若点P(3,y)是角CC终边上的一点,且满足y.y=-4,Atan=-4答案号微思考1 .三角函数值的大小与点P在角。终边上的位置是否有关?提示三角函数值是比值,是一个实数,没有单位,这个实数大小和点尸,y)在终边上的位置无关,而仅由角a的终边位置所决定。对于确定的角,其终边的位置也唯一确定了,就是说,三角函数值的大小仅与角有关,它是角的函数。2 .若两个角扇4的正弦值相等,那么=夕吗?提示不一定相等,4可能相等,也可能为终边相同的角,还可能终边关于),轴对称。3 .三角函数值在各象限的符号由什么决定?提示正弦函数值的符号与y的符号相同;余弦函数值
6、的符号与X的符号相同。正切函数值的符号由点角定。三、合作探究题型一利用角。的终边上任意一点的坐标求三角函数值【例1】已知角的终边过点P(-3a,44)(00),求2sin+cos0的值。解r=y(-3)(4。)2=5同,若0,则r=5,角在第二象限。,y44X3a3Sma=F=五=干coSa=:=丁=一亍83所以2sin+cos=-1.若0,则=5,角在第四象限,4。43。3sina=一丁=-7cosa=一丁=5a5-5a5Q3所以2sin+cosa=-+;=1.规律方法(1)已知角终边上任意一点的坐标求三角函数值的方法在的终边上任选一点P(JGy),设P到原点的距离为r贝IJSina=夕CO
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 概念