图像频域处理的概述.docx
《图像频域处理的概述.docx》由会员分享,可在线阅读,更多相关《图像频域处理的概述.docx(10页珍藏版)》请在优知文库上搜索。
1、摘要图像的频域处理是指根据一定的图像模型,对图像频谱进行不同程度修改的技术。二维正交变换是图像处理中常用的变换,其特点是变换结果的能量分布向低频成份方向集中,图像的边缘、线条在高频成份上得到反映,因此正交变换在图像处理中得到广泛运用。傅里叶作为一种典型的正交变换,在数学上有比拟成熟和快速的处理方法。卷积特性是傅里叶变换性质之一,由于它在通信系统和信号处理中的重要地位一-应用最广。在用频域方法进行卷积过程中尤其要注意傅里叶变换的周期性,注意周期延拓的重要作用,本次课设将对此作详细的介绍。关键字:频域处理,二维傅里叶变换,卷积,周期延拓1图像频域处理的概述图像的频率是表征图像中灰度变化剧烈程度的指
2、标,是灰度在平面空间上的梯度。如大面积的沙漠在图像中是一片灰度变化缓慢的区域,对应的频率值很低;而对于地表属性变化剧烈的边缘区域在图像中是一片灰度变化剧烈的区域,对应的频率值较高。频域处理是指根据一定的图像模型,对图像频谱进行不同程度修改的技术,通常作如下假设:1)引起图像质量下降的噪声占频谱的高频段;2)图像边缘占高频段;3)图像主体或灰度缓变区域占低频段。基于这些假设,可以在频谱的各个频段进行有选择性的修改。为什么要在频率域研究图像增强(1)可以利用频率成分和图像外表之间的对应关系。一些在空间域表述困难的增强任务,在频率域中变得非常普通。(2)滤波在频率域更为直观,它可以解释空间域滤波的某
3、些性质。(3)可以在频率域指定滤波器,做反变换,然后在空间域使用结果滤波器作为空间域滤波器的指导。(4)一旦通过频率域试验选择了空间滤波,通常实施都在空间域进行。2二维傅里叶变换由于图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面空间上的梯度。傅立叶变换在实际中的物理意义,设f是一个能量有限的模拟信号,那么其傅立叶变换就表示f的谱。从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换到频率域,其逆变换是将图像从频率域转换到空间域。换句话说,傅立叶变换的物理意义是将图像的灰度分布函数变换为图像的频率分布函数,傅立叶逆变换
4、是将图像的频率分布函数变换为灰度分布函数。2.1二维连续傅里叶变换如果二维连续函数f(x,y)满足狄里赫莱条件,那么将有下面的傅立叶变换对存在:与一维傅立叶变换类似,二维傅立叶变换的傅立叶谱和相位谱为:2.2二维离散傅里叶变换一个MXN大小的二维函数f(x,y),其离散傅立叶变换对为:在数字图像处理中,图像一般取样为方形矩阵,即NXN,那么其傅立叶变换及其逆变换为:2.3二维离散傅里叶变换的性质离散傅里叶变换主要有以下性质:L平移性质2.分配律3.尺度变换(缩放)4.旋转性5.周期性和共逝对称性6.平均值7.可分性8.卷积9.相关性。这里主要简述周期性,卷积相关内容会在下一节中介绍。离散傅里叶
5、变换有如下周期性性质:反变换也是周期性的:频谱也是关于原点对称的:这些等式的有效性是建立在二维离散傅里叶变换公式根底上的。图像的周期性在图像处理中有非常重要的作用,下面会在卷积局部继续阐述周期性的相关内容。3卷积相关知识介绍卷积特性是傅里叶变换性质之一,由于它在通信系统和信号处理中的重要地位一一应用最广。共分二个定理:时域卷积定理;频域卷积定理。3.1时域卷积定理给定两个时间函数/(“/U)那么:fl(t)-2f(w)时%籍IFr)E(宙耍相乘即两个时间函数卷积的频谱等于各个时间函数频谱的乘积。3.2频域卷积定理给定两个时间函数/(乙那么:f(t)Fr耳(W)噌电积_5TE(W)时域相乘。即两
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 图像 处理 概述
