哈尔滨工程大学-理想流体力学-大作业.docx
《哈尔滨工程大学-理想流体力学-大作业.docx》由会员分享,可在线阅读,更多相关《哈尔滨工程大学-理想流体力学-大作业.docx(21页珍藏版)》请在优知文库上搜索。
1、理想流体力学大作业学生姓名:学号:2023年10月HessSmith方法计算物体附加质量摘要:本文运用HeSS-SmiIh方法计算了圆球、椭球和圆柱的附加质量系数以及椭球并行的干扰效应。同时,文章分析了网格变化对计算值的影响趋势。本文使用mallab语言对圆球、椭球与圆柱的模型进行了网格有限元的划分,得到各个单元的节点坐标,然后利用HeSS-Smith方法对圆球、椭球及并行椭球的附加质量系数进行计算及分析。关键字:边界元;Hess-Smilh:附加质量系数一、物理背景Hess-Smith方法是一种计算任意三维物体势流的方法,该方法由美国的Hess和Smith两人于20世纪60年代提出。Hess
2、-Smith方法又称为分布奇点法,作为一种边界元方法,它用许多平面四边形或三角形外表单元来表示物体外表,并在每个单元上布置强度未知的源,然后在物体外表的某些考察点上满足法向速度为零的物面边界条件,得到求单元源密度的线性代数方程组。求解方程组得到源密度分布,进而可求流场内任意点的速度、压力等物理量。二、理论依据2.1分布源模型的建立S为无界流中的物体外表,来流为均匀流,在无穷远处流体的速度为:%=%+匕J0(,y,z)为定常速度势,并在物体外部空间域中满足拉普拉斯方程,在物面上适合不可穿透条件,在无穷远处,应该与均匀来流的速度势相同。即V2=0(物体外)()肘=O物面S上)On其中,单位法线向量
3、指向物体内部。在速度势中分出的均匀来流项,记=XK+y匕+z%+0O这里的0是扰动速度势,0应适合以下定解条件:vV=o(在物体外)包=-匕(在物面Sb上)()Q(无穷远处)用Rpq表示点P和点q之间的距离,根据格林第三公式,当p点位于物面s外部和远方控制面C的内部之空间域时,有如下公式:MTJyWq)1/、e/1、京八;1(q)(-)ivOdgRM3%R叫由远方边界条件可知,远方封闭控制面S,上的积分趋于零,从而上式化为:皿、刊破喧/W)又由式O可得:尹(P)=I胤9)-T-Kn4沐。4裸购RM4管Rm得到混合分布模型,为了得到单一分布模型表示的扰动势,在物体内部域中构造一个适宜的内部解外。
4、于上述物体外部的点P,函数1/R,在物体内部域中没有奇点,在物体内部域中对函数0和1/R修用格林第三公式,得:将()与()相减,得:取下式定解条件中的例:那么式0成为:其中,”,=0(在“内部)0e=e,(在Sb)02.2分布源密度的求解式0中右端分布源的法向导数极限由两局部组成,一局部是P点附近小曲面e的奉献,另一局部是物面其余局部的奉献。法向指向取向物体内部,小曲面的奉献为2(p),那么有如下关系式:再结合物面条件0,得到02m5)+JJb(q)/;ds-Vrj-n这就是分布源密度b所适合的线性积分方程。把积分方程()转换成线性代数方程组,即用离散量代替连续变量。把物面S分成N小块,记S=
5、E30=1J用平面四边形或三角形来近似代替小曲面A)。具体做法如下,取第j小块的四个顶点坐标之算术平均值,得到中心点PJ的坐标。计算对角线向量的向量积(指向与曲面法线指向相符合),用,表示该方向上的单位向量,形成以%为法线且通过中心点Pj的平面,再把四个顶点向该平面作投影,以四个投影点为顶点组成平面四边形A0,用AQ,代替原来的小曲面As,称AQ,为单元。通常把小范围内的分布源密度Cr作为常数,因此只要分割不太粗,可以认为Cr在单元Q,上为常数,记作b,从而胆3/卜卜片bU叫0因此物面S上的积分可以用N个平面四边形(三角形)上积分之和来近似,即函片鸣WCFJJg小1IrF尸Jb尸SUnPI附/
6、AQyPlM,上式左端的未知量b(q)是连续型变量,而上式右端的未知量是N个离散量b/j=lN)。为了求解这N个未知数,须要N个方程。取积分方程0中的动点.为N个单元AQJ的中心点P(j=lN),称之为控制点,即控制物面条件使之成立的点。用近似式(2.2.5)代替积分方程(2.2.2)的左端,便可以写出/的N阶线性代数方程组:V=IJ当计算出影响系数旬后,即可解线性方程组得到分布源密度。2.3速度势与附加质量的求解根据速度势在控制点P处的值,由公式:pi)cijjO根据2.2得到的分布源密度刁,求解线性方程组O可得速度势的值。物体的附加质量,时,表示物体沿i方向运动引起的/方向的附加质量,公式
7、如下:(r-l,2,6)根据所求得的速度势的值可计算处附加质量的值。三、数值模型及参数计算3.1数值模型要求解流场中物体外表的速度势分布,需要先将物体的外外表进行网格划分。经过网格划分以后,原来的物体连续外外表被离散为NXM个相对独立的小平面,这些小平面构成了求解该问题的数值模型。Hess-Smith的根本思想是将连续曲面的积别离散为小单元来简化计算,其计算思路核心在于解该方程组:a/b/=也,通过求解线性方程得到b/(i,j=l,2,NM)。对于不同的计算目的,只需要改变控制面条件,即改变也来实现。得到bj后,进而由双6卜zJq求0及附加质量,其中:为求%,令人=-匕。%.,那么求得6。故而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 哈尔滨工程 大学 理想流体 力学 作业