阻变随机存储器(RRAM)综述(自己整理)汇总..docx
《阻变随机存储器(RRAM)综述(自己整理)汇总..docx》由会员分享,可在线阅读,更多相关《阻变随机存储器(RRAM)综述(自己整理)汇总..docx(47页珍藏版)》请在优知文库上搜索。
1、引言11 RRAM技术回顾12 RRAM工作机制及原理探究42.1RRAM基本结构42.2RRAM器件参数62.3RRAM的阻变行为分类72.4阻变机制分类92.4.1电化学金属化记忆效应112.4.2价态变化记忆效应152.4.3热化学记忆效应192.4.4静电/电子记忆效应232.4.5相变存储记忆效应242.4.6磁阻记忆效应262.4.7铁电隧穿效应282 .5RRAM与忆阻器303 RRAM研究现状与前景展望334 考文献36阻变随机存储器(RRAM)引言:阻变随机存储器(RRAM)是一种基于阻值变化来记录存储数据信息的非易失性存储器(NVM)器件。近年来,NVM器件由于其高密度、高
2、速度和低功耗的特点,在存储器的发展当中占据着越来越重要的地位。硅基flash存储器作为传统的NVM器件,已被广泛投入到可移动存储器的应用当中。但是,工作寿命、读写速度的不足,写操作中的高电压及尺寸无法继续缩小等瓶颈已经从多方面限制了flash存储器的进一步发展。作为替代,多种新兴器件作为下一代NVM器件得到了业界广泛的关注1、2,这其中包括铁电随机存储器(FeRAM)、磁性随机存储器(MRAM)4、相变随机存储器(PRAM)等。然而,FeRAM及MRAM在尺寸进一步缩小方面都存在着困难。在这样的情况下,RRAM器件因其具有相当可观的微缩化前景,在近些年已引起了广泛的研发热潮。本文将着眼于RRA
3、M的发展历史、工作原理、研究现状及应用前景入手,对RRAM进行广泛而概括性地介绍。1 RRAM技术回顾虽然RRAM于近几年成为存储器技术研究的热点,但事实上对阻变现象的研究工作在很久之前便已开展起来。1962年,T.W.Hickmott通过研究Al/SiO/Au、AlAl2O3AuTaTa2O5AuZ1ZrO2Au以及TiTiO2Au等结构的电流电压特性曲线,首次展示了这种基于金属一介质层金属(MlM)三明治结构在偏压变化时发生的阻变现象6。如图1所示,HiCkmOtt着重研究了基于ALCh介质层的阻变现象,通过将阻变现象与空间电荷限制电流理论、介质层击穿理论、氧空洞迁移理论等进行结合,尝试解
4、释了金属氧化物介质层阻变现象的机理。虽然在这篇文献报道中,最大的开关电流比只有30:1,但本次报道开创了对阻变机理研究的先河,为之后的RRAM技术研发奠定了基础。图1.T.W.Hickmott报道的基于AlAb3Au结构的电流电压曲线其中氧化层的厚度为3(X),阻变发生在5V左右,开关电流比约Hickmott对阻变现象的首次报道立刻引发了广泛的兴趣,之后在十九世纪60年代到80年代涌现了大量的研究工作,对阻变的机理展开了广泛的研究。除了最广泛报道的金属氧化物,基于金属硫化物7、无定形硅8、导电聚合物9、异质结构10等新材料作为介质层的结构也表现出了阻变性质。这些研究工作也很快被总结归纳11、1
5、2。早期的研究工作主要是对于阻变的本质和机理进行探究,以及对阻变机理应用于RRAM技术的展望。但此时半导体产业对新型NVM器件的研究尚未引起广泛重视,并且在对阻变现象的解释过程中遇到了很多困难,没有办法达成广泛的共识,一-完整版学习资料分享一-故而在80年代末期,对阻变的研究一度趋于平淡。90年代末期,摩尔定律的发展规律开始受到物理瓶颈的限制,传统硅器件的微缩化日益趋近于极限,新结构与新材料成为研究者日益关注的热点。与此同时.,研究者开始发现阻变器件极为优异的微缩化潜力及其作为NVM器件具有可观的应用前景13,因而引发了对基于阻变原理的RRAM器件的广泛研究。如图2所示,近十年来,由于RRAM
6、技术的巨大潜力,业界对非易失性RRAM的研究工作呈逐年递增趋势14。日益趋于深入而繁多的研究报告,一方面体现着RRAM日益引起人们的重视,而另一方面,则体现着其机理至今仍存在的不确定性,仍需要大量的研究讨论。尽管自从对阻变现象的初次报道以来,阻变器件结构一直沿用着简单的金属-介质层-金属(MlM)结构,且对于所有材料的介质层,其电流-电压特性所表现的阻变现象几乎一致,但是对于不同的介质层材料,其阻变现象的解释却各有分歧。总体而言,基于导电细丝和基于界面态的两种阻关于阻变(resistiveSWitChing)每年发表文章数图2.由WebofScience统计的每年关于阻变(resistiveS
7、WitChing)词条发表的文章数14。变解释理论已被大多数研究者接受,尤以导电细丝理论最被广泛接纳。由于基于细丝导电的器件将不依赖于器件的面积,于是材料的多样性配以细丝导电理论,愈加拓宽了RRAM技术的应用前景。截至今日,研究较为成熟的RRAM介质层材料主要包括:二元过渡金属氧化物(TMO),如NiO15,16、TiO217ZnO18;固态电解质,如Ag2S19.GeSe20;钙钛矿结构化合物21,22;氮化物23;非晶硅24;以及有机介质材料25。RRAM的研究应用还有广阔的空间值得人们去研究探寻,还有许多困难与挑战亟待人们去积极面对。近儿年,国内外研究者陆续开始对RRAM研究的现状进行综
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 随机 存储器 RRAM 综述 自己 整理 汇总
