弹性力学.docx
《弹性力学.docx》由会员分享,可在线阅读,更多相关《弹性力学.docx(45页珍藏版)》请在优知文库上搜索。
1、习题解答第二章2. 1计算:(1)bpibiqbqjbjk,Cp(liijkAfkt6ijpUpBkiBlj解:(1)piiqqijk=Bpjbjk=BPk;(2) CMeijkAjk=(bpj5qkpk5)Ajk=Apq-AIP;(3) jjpeupBkiBj=(btkbjLbiIbjk)BkiBq=BiiBo-BjiBij。1.2 证明:若/=Ciji,则eijkdjk=O0证:1ijkdjk=efkCi)kCikjdkj=CijkCijk-CijkCikf=e泳由一e泳4吊二O。1.3 设。、b和C是三个矢量,试证明:aaabacbabbbe=a,b,cfcacbccaaabacIaMa
2、ib,aic,aia2eHal仇Cl证:babbZc=bl1hihihic,=Z?ih2b3a2h2c2=,cocacbCCciaicibicicicic2e363bye31.4 设。、b、C和d是四个矢量,证明:(b)(cd)=(c)(bd)-(d)Sc)证:(08)(cd)=%e*ejtcdnemne,l=aihjcldneijkenik=aibjctdm(ujm-imji)=(alc)(tjdi)-(ald)(bici)=(c)Sd)(d)Sc)。77-1.5 设有矢量=%e,。原坐标系绕Z轴转动6角度,得到新坐标系,如图2.4所示。试求矢量在新坐标系中的分量。解:=cos,Qrz=Si
3、nG,为3二0,=-sin,2=COSe,侬=0,y=0,c=0,侬=1。图2.4U=iUi=uCoSe+“2sin。,u2,=2iUi=-iSine+如CoSe,uy=iiUl=u31.6 设有二阶张量T=EeEe八当作和上题相同的坐标变换时,试求张量T在新坐标系中的分量分r、Ti2、7和冕与。解:变换系数同上题。TN=GjK=ZL+Zicos2Msin26,2. .2.=Zkz+l2cos2+ZaiHsin2,2227=KacosO+Tsin6,看=。3. 7设有3个数,对任意机阶张量用“逅源,定义Cli1-i.jlj2-jn=A让BhhTlU若C如MKjIa为+机阶张量,试证明Az是阶张
4、量。证:为书写简单起见,取=2,m=2,则CijH=AijBki(a)在新坐标系中,有CkT=AikT因为C和/是张量,所以有Cfik=,ijjtkCum=iijAijkkrBk=ii,jBkr比较上式和式(a),得(AiL阳jj%)BkT=O由于5是任意张量,故上式成立的充要条件是AifiriAii即4是张量。2.8 设4为二阶张量,试证明:A=trA。证:.A=eie,:AAe;e=Ajk(e,e,)(e,ex.)=Ajkijik=Aii=trA。2.9 设。为矢量,A为二阶张量,试证明:(1) aA=-(Aa),(2)Aa=-(aA)证:-(Ara)r=-(Ajieie;akek)r=-
5、(Ajiel0aiejblen)r=-(Ajiakejh,eieJr=-Ajnakejkitie=aAj,ejert=aAo(2) -(aAy=-(aleiAi-,ej0e)r=-(Aaielj,le,l0et)r=一(Ayae泳e“ex)=A,ye,aiejikek=Ai,ee7aiei=Aa2.10 已知张量T具有矩阵123-T=456_789求T的对称和反对称部分及反对称部分的轴向矢量。解:T的对称部分具有矩阵135-(Tr)=357,|_579_T的反对称部分具有矩阵-1-2-TF)=IO-Ic|_20_和反对称部分对应的轴向矢量为co=e-2e2+e302.11 已知二阶张量T的矩阵
6、为-3-1O-T=-130001求丁的特征值和特征矢量。3-10解:-13-0=(l-)(3-)2-l=0001-由上式解得三个特征值为4=4,=2,=l.将求出的特征值代入书中的式(2.44),并利用式(2.45),可以求出三个特征矢量为0=%(e-e2),=-y=(e1+e2),ay=e302 .12求下列两个二阶张量的特征值和特征矢量:A=al+fimm,B=m0n+n0rn其中,。和夕是实数,血和是两个相互垂直的单位矢量。解:因为A-m=(al+mm)m=(a+)m,所以6是A的特征矢量,a+是和其对应的特征值。设。是和次垂直的任意单位矢量,则有Aa=(al+3m0m)a=aa所以和小
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性 力学