第8章松弛算法.ppt
《第8章松弛算法.ppt》由会员分享,可在线阅读,更多相关《第8章松弛算法.ppt(47页珍藏版)》请在优知文库上搜索。
1、Chapter 8:拉格朗日松弛算法8.1 基于规划论的松弛方法基于规划论的松弛方法8.2 拉格朗日松弛理论拉格朗日松弛理论8.3 拉格朗日松弛的进一步讨论拉格朗日松弛的进一步讨论8.4 拉格朗日松弛算法拉格朗日松弛算法8.5 应用案例应用案例:能力约束单机排序问题能力约束单机排序问题主要内容:目标值最优值基于数学规划:分支定界法、割平面法、线性规划松弛再对目标函数可行化等的目标值。现代优化算法:禁忌搜索法、模拟退火法、遗传算法、蚁群算法等的目标值。其它算法:分解法、组合算法等的目标值。下界算法:线性规划松弛、拉格朗日松弛等的目标值。例子1:线性规划松弛:在7.1.1中,将整数约束松弛为实数,
2、称其为7.1.1的线性规划松弛:min7.1.2,.TLPnZc xAxbstxR注:1.定理7.1.1:2.此类算法适合于整数规划问题中,决策变量为较大整数的情形.3.此类算法分两阶段:第一阶段为求松弛后线性规划问题的最优解;第二阶段为将解整数化,并考虑可行性.LPIPZZ例2:对偶规划松弛方法:7.1.2的对偶形式为:max7.1.3,.TDPTnZy bA ycstyR其中Y为决策变量.注:由对偶理论知,7.1.2和7.1.3有相同的最优值,至于采用其中的哪个模型求解7.1.1的下界,需比较哪个计算简单.例3.代理松弛法:当(7.1.1)中的约束太多时,代理松弛一个约束代替(7.1.1)
3、中的K个约束极端情况可以用一个代替全部111()kknKKi jjijkkaxb 1,1kkni jjijaxbkK111()nmmi jjijkkaxb 注:代理松弛法保证目标函数,整数规划约束不变,显然,由代理松弛法求得的解不一定可行例4.拉格朗日松弛方法基本原理:将目标函数中造成问题难的约束吸 收到目标函数中,并保持目标函数的线性,使问题容易求解.Q:为什么对此类方法感兴趣?A:(1).在一些组合优化中,若在原问题中减少一些约束,则使得问题求解难度大大降低.(我们把这类约束称为难约束).(2).实际的计算表明此种方法所得到的结果相当不错.7.1 基于规划论的松弛方法松弛的定义(7.1.1
4、):问题整数规划模型:min7.1.1,.TIPnZc xAxbstxZ:min()RRRx SRPZzx满足下列性质时,称为7.1.1的一个松弛(relaxation).(1)可行解区域兼容:(2)目标函数兼容:(),TRc xzxxS RSS其中,为7.1.1的可行域.S例7.1.1 set covering problem问题描述:设 ,所有 ,且每一列对应一个费用 ,表示第j列覆盖第i行,要求在最小的费用下选择一些列,使其覆盖所有的行.()ijm nAa0,1ija(1)jcjn 1ija 11min().1,10,1,1nscjjjni jjjjzc xSCsta ximxjn松弛问
5、题:111min(1)().0,1,10nmnLRSCjjiijjjijjzc xa xLRSCst xjn松弛模型:11min().0,1,10nmLRSCjjijijzd xLRSCst xjn1mjjiijidca以上问题很容易求得最优解1,0*0,jdxother7.2 拉格朗日松弛理论min,():.,.TIPnZc xAxbIPstBxdxZ难约束(简单约束)|,nSxZAxb Bxd()min():,.TTLRnZc xbAxLRBxdstxZ(简单约束)原整数规划问题拉格朗日松弛|nLRSxZBxd定理7.2.1 LR同下整数规划问题(7.2.1)有相同 的复杂性,且若IP可行
6、解非空,则:0,()LRIPzzmin.(7.2.1)Tnc xst BxdxZ()min():,.TTTLRnZcA xbLRBxdstxZ(简单约束)min,():.,.TIPnZc xAxbIPstBxdxZ难约束(简单约束)证明:注:定理7.2.1说明拉格朗日松弛是IP问题的一个下界,但我们应该求与IP最接近的下界,即:0()max()LDLRLDzz定义7.2.1 若 ,满足以下条件,则称D为凸集.,x yD(1),01xyD1()|,1iiiiiiCon QPPR|1,2,iQP i对于离散点集 ,其凸包定义为:显然Con(Q)为凸集.定理7.2.2 若拉格朗日对偶问题的目标值有限
7、,则min|,()|,TLDnzc x Axb xCon QQx Bxd xZ其中:证明:()()()min()min()min()TTTLRx QTTTx Con QTTx Con QzcA xbcA xbc xbAx设Con(Q)的极点为 ,极方向为 则:|kxkK|jrjJ,()0min()(),:TTjTTTTkTkx Qif jJcA rcA xbc xbAxother kK 由LD问题有限,则有:000max()maxmin()TTkTkLDLRk Kzzc xbAx Tj存在,jJ,使得(c-A)r0上述问题等价于:max(),.()0,0LDTkTkTTjzc xbAxkKst
8、cA rjJ 整理得:max(),.,0LDTkTkTjTjzAxbc xkKstArc rjJ 其对偶问题为:min()1.()0,;0,.kLDkjjk Kj Jkk Kkjkkkk Kk Kk KkjzcTxrstAxrbkKjJ即有:()min.TLDx Con Qzc xstAxb推论推论7.2.1:对于任给c,整数规划问题IP和拉 格 朗日对偶问题LD的目标值相等的充要条件为:(|)()|nnCon QxRAxbCon QxRAxb证:显然有|()|nnQxRAxbCon QxRAxb(|)()|)()|nnnCon QxRAxbCon Con QxRAxbCon QxRAxb从而
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 松弛 算法