第7章材料的合成与制备.ppt
《第7章材料的合成与制备.ppt》由会员分享,可在线阅读,更多相关《第7章材料的合成与制备.ppt(57页珍藏版)》请在优知文库上搜索。
1、第7章 材料的合成与制备 对材料来说,尤其是本书中一直侧重的固体材料,原则上讲,全对材料来说,尤其是本书中一直侧重的固体材料,原则上讲,全部固体物质的制备和合成方法均可以应用于其制备中。但是,我们应部固体物质的制备和合成方法均可以应用于其制备中。但是,我们应当清醒地意识到,材料不等于固体化学物质,材料的物理形态往往对当清醒地意识到,材料不等于固体化学物质,材料的物理形态往往对材料的性质起着相当大的,有时甚至是决定性的作用。因此,化学合材料的性质起着相当大的,有时甚至是决定性的作用。因此,化学合成方法并不是材料合成与制备的全部,材料还有其本身特殊的合成和成方法并不是材料合成与制备的全部,材料还有
2、其本身特殊的合成和制备手段。正因无如此,我们在这里不再一一列举经典的固体合成方制备手段。正因无如此,我们在这里不再一一列举经典的固体合成方法,而是局限介绍材料合成领域的一些基本的和特殊的方法。法,而是局限介绍材料合成领域的一些基本的和特殊的方法。7.1 制陶工艺 陶瓷(Ceramics)是一类无机非金属固体材料。陶瓷材料的形态可以分为单晶、烧结体、玻璃、复合体和结合体,这些形态各有利弊。例如,单晶具有精密功能,但成型加工困难,成本高,硬而脆。因此,要与树脂进行复核,再用纤维增强后使用。多晶陶瓷材料往往采用烧结方式成型。陶瓷的典型代表有瓷器、耐火材料、水泥、玻璃和研磨材料等。在组成上,传统陶瓷的
3、制作往往采用杂质较多的天然原料(如硅酸盐),在常温下成型、在高温下烧结而成的烧结体。这种陶瓷材料称作旧陶瓷。制陶工艺近几十年来发展迅速,制得了广泛应用在电子、能源诸多领域的耐热性、机械强度、耐腐蚀性、绝缘性以及各种电磁优越性能的新型陶瓷材料,称之为精细陶瓷(Fine Ceramics)或无机新材料(New Inorganic Materials)。陶瓷材料有各种化学成分,包括硅酸盐、氧化物、碳化物、氮化物及铝酸盐等。虽然大多数陶瓷材料含有金属离子,但也有例外。表7.1 某些精细陶瓷的应用实例 材料特 性应用领域用 途代表物质电子材料压电性点火元件、压电滤波器、表面波器件,压电变压器、压电振动器
4、引燃器、FM、TV,钟表、超声波、手术刀Pb(Zr,Ti)O3,ZrO,LiNbO3,水晶半导体热敏电阻、非线性半导体,气体吸着半导体温度计,加热器,太阳电池,气体传感器Fe-Co-Mn-Si-OBaTiO3CdS-Cu2S导电性超导体快离子导体导电材料固体电解质Yba2Cu3O7-xNa-Al2O3,-AgI绝缘体绝缘体集成电路衬底Al2O3,MgAl2O4磁性材料磁性硬质磁性体铁氧体磁体(Ba,Sr)O6Fe2O3磁性软质磁性体存储元件(Zn,M)Fe3O4(M=Mo,Co,Ni,Mg等)超 硬 材料 耐磨耗性 轴 承Al2O3,B4C 切 削 性 车 刀Al2O3,Si3N4 光学材料
5、荧 光 性 激光二极管 发光二极管全息摄影光通讯,计测GaP、GaAsGaAsP 透 光 性透明导电体透明电极SnO2,In2O3 透 光 偏 光 性透光压电体压电磁器件(Pb,La)(Zr,Ti)O3 导 光 性 通讯光缆玻璃纤维7.1.1 固体反应与制陶过程 1固体反应一般原理 固体原料混合物以固体形式直接反应过程是制备多晶固体(即粉末)最为广泛应用的方法。固体混合物在室温下经历一段时间,并没有可觉察的反应发生。为使反应以显著速度发生,通常必须将它们加热至甚高温度,一般在1000 1500。这表明热力学和动力学两种因素在固体反应中都极为重要:热力学通过考察一个特定反应的自由能来判断该反应能
6、否发生,动力学因素则决定反应进行的速率。下面我们以1:1摩尔比的MgO和Al2O3的混合物反应生成尖晶石为例来讨论固体反应过程的影响因素。热力学和结构因素评价热力学和结构因素评价 从热力学上看,MgO和Al2O3的混合物反应生成尖晶石的反应:MgO(s)+Al2O3(s)MgAl2O4(s)7.1.1的自由能允许反应正向自发进行。但固相反应实际上是反应物晶体结构发生变化的过程。尖晶石MgAl2O4 和反应物MgO、Al2O3的晶体结构有其相似性和差异性。尖晶石MgAl2O4 和反应物MgO结构中,氧负离子均作面心立方密堆排列,而在Al2O3的晶体结构中,氧负离子呈畸变的六方密堆排列;另一方面,
7、阳离子Al3+在Al2O3和尖晶石MgAl2O4中占据氧负离子的八面体空隙,而阳离子Mg2+在MgAl2O4 结构中占据氧负离子四面体配位,而在MgO结构中却占据氧负离子八面体配位孔隙。图7.1(a)MgO和Al2O3单晶反应时相互紧密接触状态 (b)MgO和Al2O3单晶中互扩散反应示意图,(c)镍尖晶石产物厚度x与温度和时间的关系MgOAl2O3MgOAl2O3Mg2+Al3+MgAl2O4产物层新反应物-产物界面3x/4x/4起始界面(a)(b)(c)200时间/小时100 x2106(cm2)20010515150014001300MgOAl2O3MgOAl2O3Mg2+Al3+MgA
8、l2O4产物层新反应物-产物界面3x/4x/4起始界面(a)(b)(c)200时间/小时100 x2106(cm2)20010515150014001300 动力学评价动力学评价 从动力学上看,MgO和Al2O3的混合物反应生成尖晶石的反应在室温时反应速率极慢,仅当温度超过1200时,才开始有明显的反应,必须将粉末在1500下加热数天,反应才能完全。过程分析过程分析 MgO和Al2O3两种晶体反应是相互紧密接触,共享一个公用面,即产物先在界面生成,存在尖晶石晶核的生长困难,还有产物随之进行扩散的困难。图7.1给出氧化镁和氧化铝反应生成尖晶石过程的示意图。由图7.1(a)可见,当MgO和Al2O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 材料 合成 制备