第4章纳米固体材料构.ppt
《第4章纳米固体材料构.ppt》由会员分享,可在线阅读,更多相关《第4章纳米固体材料构.ppt(83页珍藏版)》请在优知文库上搜索。
1、第4章 纳米固体材料的微观结构主要内容主要内容u 纳米固体的结构特点u 纳米固体界面的结构模型u 纳米固体界面的X光实验研究u 界面结构的电镜观察u 穆斯堡尔谱研究u 纳米固体结构的内耗研究u 正电子淹没研究u 纳米材料结构的核磁共振研究u 拉曼光谱u 电子自旋共振的研究u 纳米材料结构中的缺陷u 康普顿轮廓法 径向分布函数(radial distribution function),简称为RDF,表示电子出现在半径为r的球面附近单位厚度球壳内的概率,以符号D(r)表示。通常定义D(r)为:D(r)=4R(r)2(r),其中R(r)为原子轨道中的径向部分。它反映电子云的分布随半径r的变化情况。
2、XPS(X-ray photoelectron spectroscopy,XPS)X射线光电子能谱:X射线光电子能谱是利用波长在X射线范围的高能光子照射被测样品,测量由此引起的光电子能量分布的一种谱学方法。它可以给出固体样品表面所含的元素种类、化学组成以及有关的电子结构重要信息.孪晶是指两个晶体(或一个晶体的两部分)沿一个公共晶面构成镜面对称的位向关系,这两个晶体就称为孪晶,此公共晶面就称孪晶面。驰豫:一个宏观平衡系统由于周围环境的变化或受到外界的作用而变为非平衡状态,这个系统再从非平衡状态过渡到新的平衡态的过程就称为弛豫过程。弛豫过程实质上是系统中微观粒子由于相互作用而交换能量,最后达到稳定
3、分布的过程。弛豫过程的宏观规律决定于系统中微观粒子相互作用的性质。因此,研究弛豫现象是获得这些相互作用的信息的最有效途径之一。居里温度是指材料可以在铁磁体和顺磁体之间改变的温度。低于居里温度时该物质成为铁磁体,此时和材料有关的磁场很难改变。当温度高于居里温度时,该物质成为顺磁体,磁体的磁场很容易随周围磁场的改变而改变。这时的磁敏感度约为10的负6次方。位错:晶体滑移时,已滑移部分与未滑移部分在滑移面上的分界。它是一种“线缺陷”。基本形式有两种:滑移方向与位错线垂直的称为“刃型位错”;滑移方向与位错线平行的称为“螺型位错”。化学位移:试样表面某原子因其所处的化学环境与纯元素不同,会引起内层轨道结
4、合能大小(数值)的变化,表现为XPS(X射线光电子能谱)谱峰的相应轨道结合能在坐标上向高或向低结合能方向的位移,这种现象称为化学位移(chemical shift);某一物质吸收峰的位置与标准质子吸收峰位置之间的差异称为该物质的化学位移(chemical shift),常以表示:化学位移()=【样品TMS/0(核磁共振仪所用频率)】*1000000式中,样品为样品吸收峰的频率,TMS为四甲基硅烷吸收峰的频率。由于所得的数据很小,一般只有百万分之几,故乘以1000000。康普顿轮廓(Compton profile):康普顿方程是假定电子是自由的、静止的,实际上电子不是静止不动的。康普顿散射中散射
5、的X射线谱的轮廓随元素Z而变化,反映了不同元素中电子运动状态是不一样的。这种X射线谱的轮廓称康普顿轮廓,它直接反映了物质内部的电子动量分布。屈服强度是材料屈服的临界应力值。断裂强度是指材料发生断裂的应力。超塑性:凡金属在适当的温度下(大约相当于金属熔点温度的一半)变得像软糖一样柔软,而应变速度10毫米秒时产生本身长度三倍以上的延伸率,均属于超塑性。同质异能移:对于一个特定的跃迁,同质异能移与原子核外的电子密度直接相关,它表现为共振吸收谱线的移动。荷兰物理学家塞曼在1896年发现把产生光谱的光源置于足够强的磁场中,磁场作用于发光体使光谱发生变化,一条谱线即会分裂成几条偏振化的谱线,这种现象称为塞
6、曼效应。L为特征长度;G是剪贴模量;b为伯格斯矢量;p为点阵摩擦力。共格晶界或相界是一类特殊而常见的低能态界面,结构特征是界面上的原子同时位于其两侧晶格的结点上,即界面两侧的晶格点阵彼此衔接,界面上的原子为两者共有。一些共格晶界(如小角度倾侧晶界)对位错运动的阻碍能力弱,因而不能有效地强化材料;而另一些共格或半共格晶界则可有效地阻碍位错运动,具有强化效应。4.1 纳米固体的结构特点该组元中所有原子都位于晶粒内的格点上所有原子都位于晶粒之间的界面上TEM,XRD,穆斯堡尔谱,正电子淹没纳米微晶晶粒组元界面组元 纳米微晶界面的原子结构取决于相邻晶体的相对取向及边界的倾角。如果晶体取向是随机的,则纳
7、米固体物质的所有晶粒间界将具有不同的原子结构,这些原子结构可由不同的原子间距加以区分。如果4.1所示,不同的原子间距由晶界A,B内的箭头表示。纳米非晶结构材料与纳米微晶不同,它的颗粒组元是短程有序的非晶态。界面组元的原子排列是比颗粒组元内原子排列更混乱,总体来说,他是一种无序程度更高的纳米材料。4.2 纳米固体界面的结构模型 纳米材料结构的描述主要应该考虑到颗粒的尺寸、形态及其分布,界面的形态、原子组态或者键组态,颗粒内和界面的缺陷种类、数量及组态,颗粒内和界面的化学组分、杂质元素的分布等。其中界面的微观结构在某种意义上来说是影响纳米材料性质的最重要的因素。下面我们简述一下自1987年以来描述
8、纳米固体材料微结构的几个模型。类气态模型有序模型结构特征分布模型纳米微晶界面内原子排列既没有长程序,又没有短程序,是一种类气态的,无序程度很高的结构。纳米材料的界面原子排列是有序的。纳米结构材料的界面并不是具有单一的同样的结构,界面结构是多种多样的。纳米固体界面的结构模型4.纳米固体界面的X光实验研究 晶体在结构上的特征是其中原子在空间的排列具有周期性,即具有长程有序。多晶是由许多取向不同的单晶晶粒组成,在每一晶粒中原子的排列仍是长程有序的。非晶态原子的空间排列不是长程有序的,但却保持着短程有序,即每一原子周围的最近邻原子数与晶体中一样仍是确定的,而且这些最近邻原子的空间排列方式仍大体保留晶体
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 纳米 固体 材料