第四章随机变量的数字特征.docx
《第四章随机变量的数字特征.docx》由会员分享,可在线阅读,更多相关《第四章随机变量的数字特征.docx(20页珍藏版)》请在优知文库上搜索。
1、第四章随机变量的数字特征第01讲离散型、连续型随机变量的数学期望第一节随机变量的数学期望1.1离散型随机变量的数学期望离散型随机变量的数学期望(定义1):设离散型随机变量X的分布律为P(X=Xk=Pk,k=l,2,.若级数ZXm绝对收敛,则称级kl数ZXkPk的和为离散型随机变量X的数学期望(简称期望或均值),记作E(X),即k-lE(X)=SXJV【例题计算题】甲、乙两名射手在一次射击中的得分分别为X,Y,其分布律分别为X:23P0.40.10.5Y123P0.10.60.3试比较甲乙两射手的技术.【思考】X与Y属于什么类型的随机变量?比较甲乙两射手的技术是什么意思?正确答案分析题意,可知是
2、通过求解X与Y的数学期望来比较两位射手的技术(数学期望是随机变量取值的平均值)分别计算X和Y的数学期望,有E(X)=l0.4+20.l30.5=2.1E(Y)=l0.l+20.630.3=2.2由于E(Y)E(X),所以射手乙的技术更好.几种重要的离散型随机变量的数学期望(1)0-1分布分布律:PX=1)=p,PX=O=1p,Opl数学期望:E(X)=lp+0(l-p)=p.(2)二项分布设随机变量XB(n,P),即有分布律为:pli=P(X=k)=Cknpk(l-p)n-k,k=0,1,2.,n,0pl数学期望:E(X)=XR=ck-py-k=Xkipk-pk1uiKen-KyH噂黄%r”p
3、广=噂C缉gp广Ir-*=nPcLtPi(1-pk,=11ppC-p)b=nPUO(3)泊松分布设随机变量X-P(N),则其分布律为:pk=PX=k)=e-iK?,k=0,1,2,数学期望为:E(X)=SXj)LSkAeYJIb-OK!&Z4M=e,=e-V*=eJ=JLS(k-l)i【例题计算题】设随机变量XB(n,0.08),已知E(X)=1.2,求参数n.正确答案X服从二项分布,可知E(X)=np,又题目给出E(X)=1.2,则有np=n0.08=1.2,求得n=1.2/0.08=15.定理1设X为离散型随机变量,分布律为PX=xJ=Pk,k=l,2,.令=g(X),若级数Eg(XIjP
4、k绝对收敛,则=g(X)的数学期望存在,并且有E(Y)=EgQC)=g(xk)pk【例题填空题】设随机变量X的分布律为X-1012P0.10.20.30.4令Y=2X+1,则E(Y)=.正确答案。手写板图示E(Y)=(-1)0.l+l0.2+3O.3+50.4=-0.1+0.2+0.9+2=3【例题填空题】设离散型随机变量X的分布律为X123P0.10.20.7则E(X2)=I正确答案手写板图示E(X2)=l0.l+40.2*0.7=0.1-K).8-.3=7.21.2 连续型随机变量的数学期望连续型随机变量的数学期望(定义2):逡连续型随机变量X的概率密度为f(X),若广义积分匚l(x)Ch
5、-绝对收敛,则称该广义积分的值为该连续型随机变量X的数学期望(简称为期望或均值),记为E(X),即EGV)=J【例题计算题】.2l.X、csmX.设随机变量X的概率密度为人力=J20,反他求:(1)常数c;(2)E(X).正确答案(1)7(k=ECs2xdx=EC()Ck褥Jc=2.(2)jf(X)=*x(x)dx=j-xsin2xrfrOyFX几种重要的连续型随机变量的数学期望(1)均匀分布设随机变量X服从区间a,b上的均匀分布,概率密度为W = 0的指数分布,概率密度为f 2el 数学期望为)=Jox0,x0,E(X)=Jx*(x)dx=Joxexdx(3)正态分布设随机变量XN(,2),
6、概率密度为-oX -H30/(x)=-riF,yJ2则其数学期望为dr令【例题计算题】设随机变量X的概率密度为、2r,Oxl1.l=0其他;/()=LF求E(X).正确答案J手写板图示(1)E(X)=J;xf(x)dx=J;X-2xdx=2X2dx=2+x3=2y(l-0)_2一3E(X)=4ydxxdx=-Xoxe,Cdx-晨Xerd()=*以XdexfUxMe-x)=xex-j%edx-J-xe-定理2设X为连续型随机变量,其概率密度为f(x),并且随机变量Y=g(X),则当积分绝对收敛时,Y=g(X)的数学期望存在,并且有-V-JOerdx匚以X)Zr(X油E(Y)=EBX)=Cg(x)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第四 随机变量 数字 特征