第4章贪心算法名师编辑PPT课件.ppt
《第4章贪心算法名师编辑PPT课件.ppt》由会员分享,可在线阅读,更多相关《第4章贪心算法名师编辑PPT课件.ppt(57页珍藏版)》请在优知文库上搜索。
1、1第4章 贪心算法2第4章 贪心算法 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。3第4章 贪心算法本章主要知识点:4.1 活动安排问题 4.2 贪心算法的基本要素 4.3 最优装载 4.4 哈夫曼编码 4.5 单源最短路径 4.6 最小生成树 4.7 多机调度问题
2、 4.8 贪心算法的理论基础44.1 活动安排问题 活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。该问题要求高效地安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。54.1 活动安排问题 设有n个活动的集合E=1,2,n,其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si fi。如果选择了活动i,则它在半开时间区间si,fi)内占用资源。若区间si,fi)与区间sj,fj)不相
3、交,则称活动i与活动j是相容的。也就是说,当sifj或sjfi时,活动i与活动j相容。64.1 活动安排问题在下面所给出的解活动安排问题的贪心算法greedySelectorgreedySelector:public static int greedySelector(int s,int f,boolean a)int n=s.length-1;a1=true;int j=1;int count=1;for(int i=2;i=fj)ai=true;j=i;count+;else ai=false;return count;各活动的起始时间和结各活动的起始时间和结束时间存储于数组束时间存储于数
4、组s s和和f f中且按结束时间的非减中且按结束时间的非减序排列序排列 74.1 活动安排问题 由于输入的活动以其完成时间的非减序非减序排列,所以算法greedySelectorgreedySelector每次总是选择具有最早完成时具有最早完成时间间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时使剩余的可安排时间段极大化间段极大化,以便安排尽可能多的相容活动。算法greedySelectorgreedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)O(n)的时间安排n个
5、活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)O(nlogn)的时间重排。84.1 活动安排问题 例:例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:i12345678910 11Si 130535688212fi45678910 11 12 13 1494.1 活动安排问题 算法算法greedySelector greedySelector 的的计算过程计算过程如左图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。104.1 活动安排问题 若被检
6、查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。贪心算法并不总能求得问题的整体最优解整体最优解。但对于活动安排问题,贪心算法greedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。114.2 贪心算法的基本要素 本节着重讨论可以用贪心算法求解的问题的一般特征。对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质贪心选择性质和最优子
7、结最优子结构性质构性质。124.2 贪心算法的基本要素1.1.贪心选择性质贪心选择性质 所谓贪心选择性质贪心选择性质是指所求问题的整体最优解整体最优解可以通过一系列局部最优局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上自底向上的方式解各子问题,而贪心算法则通常以自顶向下自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。134.2 贪心算法的基本要素2.2.
8、最优子结构性质最优子结构性质 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。144.2 贪心算法的基本要素3.贪心算法与动态规划算法的差异 贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解?下面研究2个经典的组合优化问题组合优化问题,并以此说明贪心算法与动态规划算法的主要差别。154.2 贪心算法的基本要素 0-10-1背包问题:背包
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 贪心 算法 名师 编辑 PPT 课件
