北师大版八上8上第2章第3节立方根教学设计.docx
《北师大版八上8上第2章第3节立方根教学设计.docx》由会员分享,可在线阅读,更多相关《北师大版八上8上第2章第3节立方根教学设计.docx(6页珍藏版)》请在优知文库上搜索。
1、北师大版数学八年级上册第二章实数第三节立方根教学设计一、课标要求(1) 了解立方根的概念,会用根号表示数的立方根。(2) 了解乘方与开方互为逆运算,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求立方根。核心素养:本节课突出培养的是数学抽象能力、运算能力.二、教材与学情分析1、教材分析立方根是义务教育课程标准实验教科书北师大版八年级(上)第二章实数第三节.本节内容安排了1个学时完成.主要是通过类比平方根的教学,探索立方根的概念、表示方法性质和计算.因此,除了掌握具体的知识技能外,还需要学生感受类比的思想方法,为今后的学习打下基础.2、学情分析在学习了平方根概念的基础上学习立方根的
2、概念,学生比较容易接受,因此教学重点放在立方根具有唯一性(实数范围内)的讨论上.在学生对数的立方根概念及个数的唯一性有了一定理解的基础上,再提出数的立方根与数的平方根有什么区别,学生就容易解决问题.三、教材重点难点重点:立方根的概念、性质及计算.难点:熟练进行立方根的计算;立方根与平方根的联系及区别四、教学目标1 .了解立方根的概念,会用根号表示一个数的立方根.2 .了解开立方与立方互为逆运算,能用立方运算求某些数的立方根.3 .了解立方根的性质.4 .区分立方根与平方根的不同.五、当堂检测1 .求下列各数的立方根:27-64,1000,0.008,Q125y2 .求下列各式的值:V,125V
3、-6457(V)3W-信I3 .一个正方体,它的体积是棱长为3cm的正方体体积的8倍,这个正方体的棱长是多少?设计意图:回扣教材引例,同时对本节课所学内容进行简单的巩固与练习.六、教学过程一.复习回顾:完成以下题目并思考,我们是从哪些方面研究平方根的?1、16的平方根是7的平方根是.2、请描述平方根的定义以及表示方法?设计意图:上一节学习了平方根,本节课的结构和平方根类似,因此本节课是类比平方根进行学习的,在上课之前,首先通过几个小问题帮助学生回忆平方根的定义、表示、性质以及计算,同时提出问题我们是从哪些方面研究平方根的?帮助学生理清本节课的学习思路。二.情景导入问题:(1)要做一个体积为27
4、cm3的正方体模型(如图),它的棱长要取多少?你是怎么知道的?(2)如果问题中正方体的体积为8cm3,那么它的枝长是多少?(3)如果问题中正方体的体积为IoCm3,那么它的棱长又该是多少?设计意图:通过实际情境引入,让学生感受新知学习的必要性,激发学生的求知欲望.教材中运用的是球形储气罐的问题构建动场,在此问题基础上,引申出“如果新储气罐的体积是原来的4倍呢?,从而把问题转化为ON这一问题.但我考虑到学生的具体学情,他们对于利用球的体积公式进行运算存在一定困难,结合学生已有的认知水平,相对而言,他们更熟悉正方体的棱长和体积之间的关系.反复对比,再三权衡,我最终决定用正方体的问题构建动场,先研究
5、/=27,=8这一能解决的简单问题,再引申出=0的问题.把实际问题和学生已有的认知水平相结合,以正方体的体积引入立方根的概念,同时为后面的估算做一些铺垫。三.新课讲解立方根的概念一般地,如果一个数工的立方等于即那么这个数工就叫做。的立方根(也叫做三次方根)。表示方法:记作必(读作三次根号。)。例如./=IO时,X是10的立方根,即X=朗后。23=8,2是8的立方根,即我二2。1 .填一填:(1)因为23=8,所以8的立方根是():(2)因为()3=0.125,所以0,125的立方根是()(3)因为()3=0,所以。的立方根是()(4)因为()3=-8,所以一8的立方根是()QQ(5)因为()3
6、=,所以的立方根是().27272 .想一想:观察上述题目,对于各数的立方根结果,你有什么发现?归纳小结:每个数。都只有一个立方根,正数的立方根是正数;O的立方根是0;负数的立方根是负数开立方:求一个数。的立方根的运算叫做开立方。其中。叫做被开方数。开立方与立方运算互为逆运算。意图:此处直接给出立方根的概念,简洁明了,同时为了帮助学生更好的理解定义并进一步研究性质设计了填一填活动,让学生从实例出发感受立方根,然后设计了想一想活动,这是一个开放性问题,学生可以从不同的角度研究立方根的结果,从而得到立方根的性质。在小结时,强调立方根的唯一性以及符号的一致性,同时在表示时,3作为根指数,不能省略。3
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 版八上 立方根 教学 设计