分数阶控制理论研究-毕业论文.docx
《分数阶控制理论研究-毕业论文.docx》由会员分享,可在线阅读,更多相关《分数阶控制理论研究-毕业论文.docx(39页珍藏版)》请在优知文库上搜索。
1、-文档均为word文档,下载后可直接编辑使用亦可打印-摘要进入21世纪以来,随着分数阶微积分理论研究不断取得突破,控制领域中的新的研究热点就是对其进行理论研究,分数阶微积分是整数阶微积分的推广,将微积分阶次从我们熟知的整数域推广到实数域,甚至复数域。其理论基础是分数阶微积分算子及方程,这是一个新的研究方向。大量的实践已经证明,在控制理论中应用分数阶微积分,相比整数阶微积分,具有更好的效果。在扩展控制理论的经典研究方法方面,在解释现有结果方面,分数阶微积分都为之提供了非常强劲的支持。论文阐述了分数阶微积分的基本理论,从其定义、导数定义以及性质进行了分析了详细说明。接下来分析了微积分控制理论在实际
2、中的应用,针对分数阶PlD进行了研究讨论,在前人研究基础上,对于分数阶PlD自整定算法进行了研究分析,最后在matlab里进行仿真讨论。关键词:分数阶,分数系统,分数阶PlDAbstractSincethebeggingofthe21stcentury,thefractionalordercalculustheoryhasachievedlotsofbreakthough.Fractionalcalculusisthecalculuswhoseintegrationordifferentiationorderisnotconventionalintegernumberbutrealoreven
3、complexone.Itisextensitionofintegercalculus.Farctionalordercontrol,whichisestablishedontheideaOffractionalorderoperatorsandthetheoryoffractionalorderdieffrentialequations,isnowaquitenewresearchdirection.Practicehasprovedthatbetterresultscouldbeobtainedbyintroductionoffractionalcalculusincontroltheor
4、y.Fractionalcalculusprovidesapowerfulsupportfortheexpansionoftheclassicresearchmethodsincontroltheoryandabetterexplainationofthecurrentresults.ThisPaperexpoundsthebasictheoryoffractionalordercalculus,fromthedefinitionandnatureofitsdefinition,derivativeisanalyzedindetail.Thenanalyzedthecontroltheoryo
5、fcalculusintheactualapplication,inviewofthefractionalorderPIDwiththeresearchanddiscussiononthebasisofpreviousstudies,thefractionalorderPIDself-tuningalgorithmareanalyzed,andfinallyinthematlabsimulationisdiscussed.KeyWords:fractional-order,fractionalsystem,fractionalorderPID第一章绪论1.1 引言分数阶微积分展现了微积分环节逐
6、渐变化的一个过程,它是常规的整数阶微积分的一个推广,从这一点上来讲,整数阶微积分可以理解为我们把分数阶微积分的微分或积分设为整数的时候的一种特殊例子。分数阶微积分从其建立之初到发展至今经过了有300多年,可以说它同整数阶微积分有着一样的长久发展历程。在早期的研究中,研究方向主要偏向于理论上的研究,想要离散化地数字实现分数阶微积分环节是比较困难的,这是早期落后的计算机水平所造成的。在现代社会,在计算机的软硬件以及智能水平迅猛发展的基础上,分数阶微积分理论应用到越来越多的领域上,分数阶控制理论成为了自动控制领域里的一个新的分支。应用分数微积分的领域非常多,在材料学、力学、地震分析、机器人、控制器设
7、计、概率学等领域都有其应用之处13-叫数学家在研究理论的过程中,各自根据他们自己的想法理解,针对怎样来具体定义分数阶微积分算法,他们给出了几个不同定义,常见的有Riemann-Liouville定义,GnInWald-LetniOoV定义,以及CaPUto定义,对于分数阶微积分怎样进行积分变换也进行了相关研究,比如LaPIaCe变换,FOUrier变换等,数学家们针对其在时域中的性质也进行了研究,比如冲激响应、阶跃响应,对于其在在频域中的性质进行了细致的观察,比如如幅频特性、相频特性等。对其近似计算方法的研究,主要有连续有理近似法、离散近似法yoi3j,近似展开方面,主要有MaCLaUrin展
8、开、连分式(CFE)展开除此之外分数阶微分方程怎样进行求解,到目前为止仍然是科学家们研究的主攻方向,目前主要的方法有解析法、数值法,解析法大部分用来理论证明分数阶微积分的一些方面,相比较而言在实际的应用中,数值法更为广泛如明近年来,分数阶微积分取得了大量研究成果,这为其在各个领域中更好发展提供了坚实的理论基础。社会发展的同时工业也在迅猛发展,在工业控制过程中,数学模型应该怎样精确建立变得愈发重要,旧的的控制理论或者别的数学建模方法还是侧重于在怎样建立集中参数系统,比如我们可以使用比例系数,用它来表示一个电阻UL但是在我们无法用几种参数来表示一个电阻的时候,通过使用偏微分方程,它是用来精确描述分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 分数 控制 理论研究 毕业论文