《轴对称》 单元作业设计.docx
《《轴对称》 单元作业设计.docx》由会员分享,可在线阅读,更多相关《《轴对称》 单元作业设计.docx(80页珍藏版)》请在优知文库上搜索。
1、安徽省中小学作业设计大赛作品学科:数学教材版本:人教版单元:第十三章轴对称地级市:马鞍山市学校:和县中学成员:高峰韩际兵钱晋仰雪峰韩骞王庆华时间:2022年3月29日初中数学单元作业设计一、单元信息基本信息学科年级学期教材版本单元名称数学八年级第一学期人教版轴对称单元组织方式0自然单元口重组单元课时信息序号课时名称对应教材内容1轴对称13.1.l(P58-60)2线段的垂直平分线的性质13.1.2(P61-64)3画轴对称图形13.2(P67-71)4等腰三角形13.3.1(P75-79)5等边三角形13.3.2(P79-81)6课题学习最短路径问题13.4(P85-87)7数学活动P88-8
2、98本章小结P90二、单元分析(一)课标要求通过具体实例了解轴对称的概念,探索它的基本性质:成轴对称的两个图形中,对应点的连线被对称轴垂直平分.能画出简单平面图形(点,线段,直线,三角形等)关于给定对称轴的对称图形.了解轴对称图形的概念:探索等腰三角形、矩形、菱形、正多边形、圆的轴对称性质.认识和欣赏自然界和现实生活中的轴对称图形.理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点与这条线段两个端点的距离相等:反之,与线段两个端点距离相等的点在这条线段的垂直平分线上.能用尺规作图完成以下基本作图:作一条线段的垂直平分线;过一点作已知直线的垂线;已知底边及底边上的
3、高线作等腰三角形.在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的坐标,并知道对应顶点坐标之间的关系.了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等:等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简写成“三线合一”).探素并掌握等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).探索等边三角形的性质定理:等边三角形的三个内角都相等,并且每一个角都等于60.等边三角形的判定定理:三个角都相等的三角形(或有一个角是60的等腰三角形)是等边三角形.课标在“知识技能”方面指出:体验从
4、具体实例中抽象出几何图形的过程;掌握必要的逻辑推理技能.在“数学思考”方面指出:通过用文字语言和几何符合语言等表述几何图形之间的关系的过程,体会几何模型思想,建立几何符号意识;体会通过合情推理探索数学结论,运用演绎推理加以证明的过程,发展推理能力;能独立思考,体会数学的基本思想和思维方式.(二)教材分析1.知识网络利用轴对称(平移)进行图案设计2.内容分析本章共有四节内容,13.1节“轴对称”主要介绍轴对称图形、图形的轴对称概念,概括出轴对称的特征.结合探索对称点的关系,归纳得出对应点连线被对称轴垂直平分的性质,并结合这个性质的得出,讨论线段垂直平分线的性质定理及其逆定理.13.2节“画轴对称
5、图形”主要研究画简单平面图形关于给定对称轴对称的图形的一般方法,用坐标从数量关系的角度刻画了轴对称.归纳出坐标平面上一个点关于X轴或),轴对称的点的坐标的规律,并进一步利用这种规律在平面直角坐标系中画出一个图形关于入轴或y轴对称的的图形.13.3节“等腰三角形”等腰三角形是一种特殊的三角形,它除了具有一般三角形的所有性质外,还有许多特殊的性质.本节研究了利用等腰三角形的轴对称性,得出了“等边对等角”“三线合一”等性质,并进一步讨论了等腰三角形的判定方法以及等边三角形的性质与判定方法等内容.13.4节”课题学习最短路径问题”本节安排了两个问题,分别是“牧马人饮马问题”和“造桥选址问题”,解决这两
6、个问题的关键是通过轴对称和平移等变化把问题转化为“两点之间,线段最短”的问题,在解决这两个问题的过程中渗透了化归的思想.(三)学情分析从学生的认知规律看:在“三角形”一章中,学生已经理解三角形及与三角形有关的线段(边、高、中线、角平分线)的概念;会用三角形的内角和定理和外角的性质进行计算;在“全等三角形”一章中,学生又学习全等三角形的概念,能识别全等三角形中的对应边、对应角,掌握并能运用全等三角形的性质和判定进行几何推理论证和计算,这些学习都为轴对称的学习打下思想方法基础.从学生的学习习惯、思维规律看:八年级(上)学生已经具有一定的自主学生能力和独立思考能力,积累了一定的数学学习活动经验,并在
7、心灵深处渴望自己是一个发现者、研究者和探究者.但是,学生的思维方式和思维习惯还不够完善,数学的运算能力、推理能力尚且不足.本章主要研究等腰三角形,因此等腰三角形的性质和判定是本章的重点.对于一些图形的性质(如线段垂直平分线的性质、等腰(边)三角形的性质与判定等),仍要求学生加以证明.学生刚开始接触用符号表示推理,虽然教科书控制了证明难度,但是相对于上一章,推理的依据多了,图形、题目的复杂程度也增加了,因此会使部分学生感到无处下手,这是本章教学的一个难点,要克三个难点,关键是要加强对问题分析的教学,帮助学生分析证明问题的思路,这时可以结合所要求证的结论一起考虑,即“两头凑”,帮助学生克服这一难点
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 轴对称 轴对称 单元作业设计 单元 作业 设计