超声引导肿瘤消融微创手术实验指导书.docx
《超声引导肿瘤消融微创手术实验指导书.docx》由会员分享,可在线阅读,更多相关《超声引导肿瘤消融微创手术实验指导书.docx(6页珍藏版)》请在优知文库上搜索。
1、超声引导肿瘤消融微创手术实验指导书一、实验任务根据超声模拟探头实体在人体模型实体中的空间位置,截取人体CT体数据的一幅切片,模拟得到超声图像,指引使用者将模拟消融针实体插入到病灶靶点区域,完成超声引导的肿瘤消融微创手术。二、实验目的1 .了解超声图像的基本成像原理,掌握基于CT体数据的超声图像模拟方法;2 .了解图像弹性配准的基本原理,掌握不同的人体CT体数据与真实人体模拟体数据弹性配准方法;3 .掌握多组坐标系之间的转换方法;4 .掌握超声图像与CT体数据融合显示的方法。三、实验要求1 .运用超声图像模拟方法,完成基于CT体数据的超声图像快速、精确模拟;2 .运用弹性配准方法,实现真实人体C
2、T体数据与人体模型CT体数据的快速、准确配准;3 .运用坐标系转换方法,将CT体数据、超声模拟探头实体、超声模拟图像统一到一个坐标系中;4 .运用融合显示的方法,将超声模拟图像和真实人体CT体数据渲染图像融合显示。四、实验设备人体模型、超声探头模型、体感定位仪、计算机。五、实验提示(实验理论、实验操作方法和实验技巧)1 .基于CT影像的超声图像实时模拟方法超声图像模拟的主要步骤为:首先,声波进入人体组织器官发生散射时,血细胞因为运动而出现多普勒现象,并清楚的显示在超声图像中,而由于血液在CT成像中不会出现多普勒现象,因此基于CT数据的超声图像模拟中血管处的失真度较高,所以需要对CT体数据进行血
3、管增强处理。本课题拟采用多尺度血管增强算法对CT体数据进行血管增强处理,并将增强后的图像与源图像按权重叠加。所谓多尺度血管增强算法是借助HeSSian矩阵的特征值,采用高斯函数设计多尺度增强滤波函数,通过改变高斯函数的标准偏移量来获得不同尺度下的线性增强滤波,利用特征值对不同形状结构的响应差异对图像进行增强,使得图像中管状目标沿中心线灰度最高且灰度向边缘减弱,而非管状目标变暗,以此实现血液多普勒现象在超声图像中的模拟。而后根据超声的传播规律,设计一种超声传播方向相邻像素差值比重的方法计算声场的反射系数,降低算法的复杂度,实现单换能器超声图像的模拟;最后采用窗函数实现多换能器超声图像融合的效果,
4、从而得到最终的超声图像模拟结果。UO-Z - -=Tangential (Iirectoin图1超声图像与CT图像之间的映射关系视场图2B型超声图像的扇形视场目前,临床疾病诊断广泛使用的是B型超声成像,而B型超声图像为扇形视场图像(FieldofView,FOV),如图2所示,分别表示超声图像扇形视场的短半径和长半径,。表示超声图像扇形视场的夹角。在超声成像时,超声探头的换能器发出的超声沿扇形视场半径方向进入人体,因而在计算超声反射、散射、折射以及衰减时,需沿扇形视场半径方向进行求解,如图2(八)所示。而B型超声系统的输出图像为矩形图像,而扇形视场只是其中一部分,如图2(B)所示,扇形视场的半
5、径方向与超声图像的横、纵轴方向并不一致,增加了反射、散射、折射和衰减系数的计算难度,由此,首先将B型超声扇形视场图像映射到一个矩形图像中,以降低后续图像模拟的计算复杂度。超声进入人体以后会因为人体组织的声阻抗不同而发生反射、折射、散射、衍射以及衰减等现象。超声在人体中的散射以及衍射情况复杂,计算量大,其散射和衍射情况计算较为困难。为了降低超声图像模拟算法的复杂度,提高超声图像模拟的速度,本章在超声图像模拟过程中仅考虑反射、折射和衰减现象。当超声进入人体声阻抗超过0.1%的组织器官边界时,会产生反射现象。定义组织器官的声阻为Z,可由Z=PC计算得到,其中P表示组织器官的密度,c表示超声的速度。声
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 超声 引导 肿瘤 消融 手术 实验 指导书