霍普菲尔德Hopfield.ppt
《霍普菲尔德Hopfield.ppt》由会员分享,可在线阅读,更多相关《霍普菲尔德Hopfield.ppt(51页珍藏版)》请在优知文库上搜索。
1、霍普菲尔德(Hopfield)神经网络1、网络结构形式2、非线性系统状态演变的形式3、离散型的霍普菲尔德网络(DHNN)4、连续性的霍普菲尔德网络(CHNN)网络结构形式 Hopfield网络是单层对称全反馈网络,根据激活函数选取的不同,可分为离散型和连续性两种(DHNN,CHNN)。DHNN:作用函数为hadlim,主要用于联想记忆。CHNN:作用函数为S型函数,主要用于优化计算。反馈网络的结构如图2.8.1所示。图2.8.1Hopfield网络结构非线性系统状态演变的形式 在Hopfield网络中,由于反馈的存在,其加权 输入和ui,i=1n为网络状态,网络的输出为y1yn,则u,y的变化
2、过程为一个非线性动力学系统。可用非线性差(微)分方程来描述。一般有如下的几种状态演变形式:(1)渐进稳定 (2)极限环 (3)混沌现象 (4)状态轨迹发散 Hopfield网络的稳定性可用能量函数进行分析。目前,人工神经网络常利用渐进稳定点来解决某些问题。例如,如果把系统的稳定点视为一个记忆的话,那么从初态朝这个稳定点的演变过程就是寻找记忆的过程。初态可以认为是给定的有关记忆的部分信息。如果把系统的稳定点视为一个能量函数的极小点,把能量函数视为一个优化问题的目标函数,那么从初态朝这个稳定点的演变过程就是一个求该优化问题的过程。这样的优点在于它的解并不需要真的去计算,而只要构成这种反馈网络,适当
3、的设计其连接值和输入就可达到目的。离散型的 Hopfield神经网络1、I/O关系2、两种工作方式3、网络的稳定性分析4、DHNN网络设计网络结构及I/O关系 图2.8.2是一个有三个节点的DHNN结构。对于以符号函数为激活函数的网络,网络的方程可写为:图2.8.2 nitutxtxwtuiinjijiji,2,1 )1(sgn)1()1(1两种工作方式 DHNN主要有以下两种工作方式:(1)串行工作方式 在某一时刻只有一个神经元按照上式改变状态,而其它神经元的输出不变。这一变化的神经元可以按照随机的方式或预定的顺序来选择。(2)并行工作方式 在某一时刻有N个神经元按照上式改变状态,而其它的神
4、经元的输出不变。变化的这一组神经元可以按照随机方式或某种规则来选择。当N=n时,称为全并行方式。DHNN的稳定工作点Xi(t+1)=Xi(t)=sgn(j=1nWijXi(t)-i)i=1,2,n网络的稳定性分析 DHNN的能量函数定义为:有界EwxxxwEXWXXxxxwEniininjijniiininjjiijTTniiininjjiij11111111121 2121 21 关于DHNN的稳定性有如下的定理:当网络工作在串行方式下时,若W为对称阵,且其对角元素非负,则其能量函数单调下降,网络总能收敛到一个稳定点。kkkkknjjkjkniiikkkkkkkkkkkkkxxwtxwxtx
5、wxEtutxtutxtutxxxtxtxxtE 211sgn,1 21sgn,1 2sgn 0 1 1 1tEE 211证明 一个局部极小点。所以它总能收敛到它的的,。另外能量函数是有界有故对任意的神经元,。又因为的运行规则,根据故有因为根据定理条件有0001 211 21 ,221EkwtuxDHNNkwtuxkwtxwxEwwkkkkkkkkkknjkjkjkjiij 全并行方式下也有同样的结论。DHNN网络设计 用 DHNN实现联想记忆需要考虑两个重要的问题:怎样按记忆确定网络的W和;网络给定之后如何分析它的记忆容量。下面将分别讨论。1、权值设计的方法2、记忆容量分析3、权值修正的其它
6、方法 在MATLAB中,用函数newhop.m来设计一个Hopfield网络:net=newhop(T)权值设计的方法 权值设计的方法有外积法、伪逆法、正交设计法等。下面仅介绍外积法,它是一种比较简单,在一定条件下行之有效的方法。niwxxwIXXWnnIRXmKXiimkkjkiijmkTKKnK1 0 ,1,11单位阵,则为给定输入例例 设计DHNN,并考察其联想性能。说明所设计的网络没有准确的记忆所有期望的模式。3233222!1131sgn Y sgn Y sgn Y031301110 111111111 TTWXTWXTWXIXXWTXKTKK验证:解:记忆容量分析 当网络只记忆一个
7、稳定的模式时,该模式肯定被网络准确无误的记忆住。但当所要记忆的模式增加时,情况则发生了变化,主要表现在下列两点上:1、权值移动2、交叉干扰权值移动 在网络的学习过程中,网络对权值的记忆实际上是逐个实现的。即对权值W,有程序:当网络准确的X1时,为了记忆X2,需要在记忆样本X1的权值上加上对样本X2的记忆项X2 X2T-I,将权值在原来值的基础上产生了移动。这样网络有可能部分得遗忘了以前以记忆住的模式。endIXXWWqkforWTKK,1 0 从动力学的角度来看,k值较小时,网络Hebb学习规则,可以使输入学习样本成为其吸引子。随着k值的增加,不但难以使后来的样本成为网络的吸引子,而且有可能使
8、已记忆住的吸引子的吸引域变小,使原来处于吸引子位置上的样本从吸引子的位置移动。对一记忆的样本发生遗忘,这种现象称为“疲劳”。交叉干扰 网络在学习多个样本后,在回忆阶段即验证该记忆样本时,所产生的干扰,称为交叉干扰。对外积型设计而言,如果输入样本是彼此正交的,n个神经元的网络其记忆容量的上界为n。但是在大多数情况下,学习样本不可能是正交的,因而网络的记忆容量要比n小得多,一般为(0.130.15)n,n为神经元数。权值修正的其它方法1、学习规则2、伪逆法3、正交化权值设计 学习规则 学习规则基本公式是:即通过计算该神经元节点的实际激活值A(t),与期望状态T(t)进行比较,若不满足要求,将两者的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 霍普菲尔德 Hopfield