[因式分解公式法教案]公式法分解因式.docx
《[因式分解公式法教案]公式法分解因式.docx》由会员分享,可在线阅读,更多相关《[因式分解公式法教案]公式法分解因式.docx(15页珍藏版)》请在优知文库上搜索。
1、因式分解公式法教案公式法分解因式公式法分解因式篇一:分解因式法一课件设计教学目标:1、会用分解因式法(提公因式,公式法)解某些简单的数字系数的一元二次方程。2、能根据具体的一元一次方程的特征灵活选择方法,体会解决问题方法的多样性。教学程序:一、复习:1、一元二次方程的求根公式:X=(b2-4ac0)2、分别用配方法、公式法解方程:x23x+2=03、分解因式:(1)5x2-4x(2)-2-(-2)(3)(x+l)2-25二、新授:1、分析小颖、小明、小亮的解法:小颖:用公式法解正确;小明:两边约去X,是非同解变形,结果丢掉一根,错误。小亮:利用如果ab=O,那么a=0或b=0来求解,正确。2、
2、分解因式法:利用分解因式来解一元二次方程的方法叫分解因式法。3、例题讲析:例:解下列方程:(l)52=4(2)-2=x(-2)解:(1)原方程可变形为:5x2-4x=0x(5-4)=0X=O或5x=4=00x1=0或2=(2)原方程可变形为X-2x(-2)=0(-2)(l-)=0X2=0或l-=00xl=2,2=14、想一想你能用分解因式法简单方程2-4=0(x+l)2-25=0吗?解:2-4=0(x+l)2-25=02-22=0(x+l)2-52=0(x+2)(-2)=0(x+l+5)(+l-5)=0x+2=0或-2=0x+6=0或-4=0xl=-2z2=2xl=-6,x2=4三、巩固:练习
3、:P62随堂练习1、2四、小结:(1)在一元二次方程的一边为0,而另一边易于分解成两个一次因式时,就可用分解因式法来解。(2)分解因式时,用公式法提公式因式法五、作业:P62习题2.71、2公式法分解因式篇二:初中数学说课稿万能一、说教材用因式分解法求解一元二次方程是北师大版九年级上册第二章第四节内容,是中学数学的主要内容之一,在初中数学中占有重要地位。我们从知识的发展来看,学生通过一元二次方程的学习,可以对已学过实数、一元一次方程、整式、二次根式等知识加以巩固,同时一元二次方程又是今后学习可化为一元二次方程的分式方程、二次函数等知识打下良好基础。二、说学情任何一个教学过程都是以传授知识、培养
4、能力和激发兴趣为目的的。中学生有强烈的好奇心和求知欲,当他们在解决实际问题时,发现要解的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想进一步研究和探索解方程的配方法问题。而从学生的认知结构上来看,前面我们已经系统的研究了完全平方公式,二次根式,用配方法公式法后,这就为我们继续研究用因式分解法解一元二次方程奠定了基础。三、说教学目标【知识与技能】掌握应用因式分解的方法,会正确求一元二次方程的解。【过程与方法】通过利用因式分解法将一元二次方程转化成两个-元一次方程的过程,体会等价转化降次的数学思想方法。【情感态度与价值观】通过探讨一元二次方程的解法,体会降次”化
5、归的思想,逐步养成主动探究的精神与积极参与的意识。四、说教学重难点运用因式分解法求解一元二次方程。发现与理解分解因式的方法。五、说教法、学法本节课我主要采用启发式、类比法、探究式的教学方法。教学中力求体现“类比_探究-归纳的模式。有计划的逐步展示知识的产生过程,渗透数学思想方法。由于学生配平方的能力有限,所以,本节课借助多媒体辅助教学,指导学生通过观察与演示,总结因式分解规律,从而突破难点。同时学生经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力,发挥学生的自觉性、活动性和创造性。六、说教学过程(一)导入新课因为数学来源与生活,所以以学生的实际
6、生活背景为素材创设情景,易于被学生接受、感知。通过课件演示课本中的实例,并应用多媒体对其进行分析,充分显示多媒体演示中的生动性、灵活性,增强直观性;同时帮助学生从实际问题中提炼出数学问题,初步培养学生的空间概念和抽象能力。由因式分解从而激发学生的求知欲望,顺利地进入新课。(二)探索新知问题1:一个数的平方与这个数的3倍有可能相等吗?如果相等,这个数是儿?你是怎样求出来的?学生小组讨论,探究后,展示三种做法。问题:小颖用的什么法?一一公式法小明的解法对吗?为什么?一一违背了等式的性质,X可能是零。小亮的解法对吗?其依据是什么一一两个数相乘,如果积等于零,那么这两个数中至少有一个为零。问题2:学生
7、探讨哪种方法对,哪种方法错;错的原因在哪?你会用哪种方法简便师引导学生得出结论:如果ab=O,那么a=0或b=0(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。)“或”有下列三层含义a=0且b0(2)a0且b=0a=0且b=0问题3:什么样的一元二次方程可以用因式分解法来解?(2)用因式分解法解一元二次方程,其关键是什么?用因式分解法解一元二次方程的理论依据是什么?用因式分解法解一元二方程,必须要先化成一般形式吗?因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。这种用分解因式解一元二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解公式法教案 因式分解 公式 教案 分解 因式