由三视图判断小正方体个数问题.docx
《由三视图判断小正方体个数问题.docx》由会员分享,可在线阅读,更多相关《由三视图判断小正方体个数问题.docx(5页珍藏版)》请在优知文库上搜索。
1、由三视图判断小正方体个数问题通过小正方体组合图形的三视图,确定组合图形中小正方体的个数,在中考或竞赛中经常会遇到。解决这类问题如果没有掌握正确的方法,仅仅依赖空间想象去解决,不仅思维难度很大,还很容易出错。通过三视图计算组合图形的小正方体的个数,关键是要弄清楚这个小正方体组合图形共有多少行、多少列、每行每列中各有多少层,理清了这些行、歹I、层的数量,小正方体的个数就迎刃而解了。在三视图中,通过主视图、俯视图可以确定组合图形的列数;通过俯视图、左视图可以确定组合图形的行数;通过主视图、左视图可以确定行与列中的最高层数。以上方法可简要地概括为:“主俯看列,俯左看行,主左看层,分清行列层,计数不求人
2、。”一、结果唯一的计数例1在一仓库里堆放着若干个相同的正方体货箱,仓库管理员将这堆货箱的三视图画了出来,如图所示,则这堆正方体货箱共有()。A.9箱B.10箱C.11箱D.12箱分析:由三视图可知,这堆货箱共有从前到后3行,从左到右3歹人由左视图:第一行均为1层,第二行最高2层,第三行最高3层;由主视图:第一列、第三列均为1层,第二列(中间列)最高为3层。故第二行、第二列为2层,第三行第二列为3层,其余皆为1层。各行、各列小正方体的个数如俯视图中所表zjO这堆货箱共有3+1+1+2+1+1=9(箱)二、结果不唯一的计数例2(“希望杯”数学邀请赛试题)如图2,是由若干个(大于8个)大小相同的正方
3、体组成的一个几何体的主视图和俯视图,则这个几何体的左视图不可分析:由给出的主视图、俯视图可以看出,该几何体共有2行,3歹h第1列均为1层,第2列最高2层,第3列最高3层。俯视图A俯视图B俯视图C俯视图D左视图为A时,第1行、第2行最高均为3层。几何体中,第1列第1行为1层;第2列第1行、第2行均可为1层或2层,但不能同时为1层;第3歹IJ两行均为3层。此时,小正方体的个数如俯视图A所示,最少为1+2+1+3+3=10(个),最多为1+2+2+3+3=11个。左视图为B时,第一行均为1层,第二行最高为3层。几何体中,第1列第1行为1层;第2列第1行为1层,第2行均可为2层;第3列第1行为1层,第
4、2行为3层。此时,小正方体的个数如俯视图B所示。小正方体个数为1+1+1+2+3=8(个)。左视图为C时,第1行最高为2层,第2行最高为3层。几何体中,第1列第1行为1层;第2列第1行为1层或2层,第2行均为1层或2层,但不能同时为1层;第3列第1行为1层或2层(不能与第2列第1行同时都为1层),第2行为3层。此时,小正方体的个数如俯视图C所示。小正方体最少为1+2+1+1+3=8(个),最多为1+2+2+2+3=10个。左视图为D时,第1行最高为3层,第2行最高为2层。几何体中,第1列第1行为1层;第2列第1行为1层或2层,第2行均为1层或2层,但不能同时为1层;第3列第1行为3层,第2行为
5、1层或2层(不能与第2列第2行同时为1层)。此时,小正方体的个数如俯视图C所示。小正方体最少为1+1+3+2+1=8(个),最多为1+2+2+2+3=10个。三、根据两种视图确定计数范围例3(江阴市中考题)如图,是由一些大小相同的小正方体组成的简单几何体的主视图和俯视图,若组成这个几何体的小正方体的块数为n,则n的所有可能的值之和为o分析:题设中给出了主视图、俯视图,可知这个几何体有3列,2行。第1列均为1层,第2列最高2层,第3列最高3层。几何体小正方形块数最少的情况是:第1列只有1行,共1个小正方体;第2列两行,至少有一行为2层,最少有2+1二3个小正方体,第3列两行中至少有一行为3层,最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 视图 判断 正方体 个数 问题
