22.1.3二次函数y=a(x-h)+k图象和性质_教案.docx
《22.1.3二次函数y=a(x-h)+k图象和性质_教案.docx》由会员分享,可在线阅读,更多相关《22.1.3二次函数y=a(x-h)+k图象和性质_教案.docx(3页珍藏版)》请在优知文库上搜索。
1、22.1.3(3)二次函数y=a(x-次2+k的图象和性质(3)一、教学目标:1 .使学生理解函数产a(-h)之+k的图象与函数y=a2的图象之间的关系。2 .会确定函数y=a(xh)?+k的图象的开口方向、对称轴和顶点坐标。3 .让学生阅历函数y=a(-h)之+k性质的探究过程,理解函数y=a(xh)?+k的性质。.二、重点难点:重点:确定函数y=a(xh)之+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(-h)+k的图象与函数y=a2的图象之间的关系,理解函数y=a(-h)2+k的性质难点:正确理解函数y=a(xh)之+k的图象与函数y=a2的图象之间的关系以及函数y=a(-h)?
2、+k的性质三、教学过程:(一).复习巩固:1、请说说下列函数图象的平移方式,并指出其顶点与对称轴。y=ay=a+ky=ay=a(jr-h)?问题:顶点不在坐标轴上的二次函数又如何呢?设计意图:在这个活动中,首先激活了学生原有的学问,体现了学生的学习是在原有学问上自我生成的过程。复习顶点在坐标轴上的二次函数,为下面学习y=a(-h)2+k图像性质作铺垫。(二)过程探究:探究1:画出函数y=-(x-l)2+2y=-(x+2)2-l的图象,指出它的22开口方向、顶点与对称轴思索:抛物线y=a(x-h)2+k中的对称轴、顶点坐标是什么?a、h、k分别确定什么?归纳二次函数y=a(xf)2+k图象和性质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 22.1 二次 函数 图象 性质 教案