中科大《线性代数与解析几何》讲义0预备知识.docx
《中科大《线性代数与解析几何》讲义0预备知识.docx》由会员分享,可在线阅读,更多相关《中科大《线性代数与解析几何》讲义0预备知识.docx(10页珍藏版)》请在优知文库上搜索。
1、第零章预备知识?0.1向量的线性运算?0.1.1向量及其表示向量:速度,加速度,力等等.用一个有向线段来表示它.以A为起点乃为 终点的有向线段所表示的向量记为.(图7.5).还常用小写的粗体字母a, b,. 来记向量.如果两个向量的大小相等、方向相同,就称这两个向量是相等的.如图7.5 一 中,AB和AW是相等的向量,记作A8=A% .自由向量:能平移至任意起点的向量.相反向量:两个向量的大小相等而方向相反.负向量.向量模及其向量模的表示.?0.1.2向量的线性运算如果两个向量是相反向量,则其和显然为零向量,就是a +)a) = )a) +a = 0.显然,还有a +0 = 0 +a = a.
2、从三角形法则容易证明向量的加法满足交换律,即a + b = b + a.从图7.8不难看出,向量的加法满足结合律a + )b + c) = )a + b) +c,因而可以略去括号而记a + b +c = )a +b) +c = a + )b +c).向量的减法与数量的减法一样,定义为加法的逆运算.向量与数的乘积.设有向量a和数儿则其乘积表示这样一个向量,它的模等于向量a的模 之倍,当大于零时它与a同向,当人小于零时与a反向(图7.9).由定义可知Oa = 0.显然又有)-l)a = -a.向量的线性组合.利用向量与数的乘积,向量a可以表示为a = a a0,其中a。表示与a同向的单位向量.由此
3、得到a .a,即一个不为零的向量除以它的模后是与它同向的单位向量.向量与数的乘积具有以下性质.设a与b是给定的两个向量,而人及是任意常数,则有) + ) a = a + a;)a) = )a) = )a;)a + b) = a + b.?0.1.3向量的共线与共面向量共线,向量共面.(零向量和任一个向量共线.)向量a1b共线的充分必要条件是,有实数人使a = b或b = a.向量a, b, C共面的充分必要条件是:其中一个向量可以表成其余二个向量 的线性组合.?0.2坐标系在空间中,任取一点O,从点O画三条互相垂直的直线,依次记为ox, OK OZ 这样就得到一个直角坐标系.如果在坐标轴Ox,
4、 Oy, Oz上以O为起点分别取三 个单位向量ij,上其方向与轴的正方向相同,这些单位向量称为坐标系OXyZ 的基本单位向量.给定向量a.过向量a的终点A作三平面分别与坐标平面平行,且与各坐 标轴交于点X, K Z.易知OX= /, V= azj , 2- a3k.由向量加法的三角形规则可得OA=OP +PA = OX +XP +PA=OX +OY +OZ,即a = ), 2, g) = ai + ay + a3k.它就是a按基本单位向量的分解式.应用这个分解式,向量的加法,减法及 向量与数的乘积就可归结为其坐标的相应运算.事实上,设a =)山,,G),b = )加,历,的),而人是一常数,则
5、有a = aii +cnj +aic, b = b i + ba + b3k.从而得到a b = )a b )i + )a2b2 )j + )a3b3 )=)4 b , a2b2 , a3b3);a = tu + Kaij + Kaik = )A ,入02 , as).例0.2.1.已知两点A)“, G, CBhB )加小,左),求向量Ab的坐标. 解如图7. 13,作向量X与豆,则OA = )a,a21 G) , OB =)bfb2,b3).所以AB= OB - OA = )b a,历一a, by一.就是说向量AB的坐标等于终点B的坐标减去起点A的坐标.口例0.2.2.设点尸把有向线段75分
6、成定比A,即有 乱=.若已知端点A和8 的坐标为)xi Jl ,Zl)和)x2,* ,Z2),求分点P的坐标)x,y,z).解由题设可知AP= kPB .若将A,P,B各点与原点O连成向量,则有OP-OA= NOB-Oa.由此得到OP= -L-) OA +KOB).I 4-Z因为*OA = i + yj+ zk, OB= x2i+y2j+ zik, OP= xi+ yj + zk,x十入町;+ “十八上;+I I 代入后给出xi+ yj + zk =比较Ud的对应系数即得Xl + M Vl + 入、2 Zl + Az2Iy= 1 +=1 + 这就是空间线段的定比分点公式.特别地,线段中点的坐标
7、为Xl +2 Vl + V2 Zl +Z2X= 2 = 2 ,Z= 2 口设向量a = ),(i2, 3)的起点在原点,这时终点A的坐标就是), cn., a3), 由空间两点的距离公式得Ial = OA=d + & + 姆.?0.3向量的内积?0.3.1内积的定义定义0.3.1.两个向量的内积是一个数量,它的大小是这两个向量的模与其夹角的余弦的乘积.通常用记号a. b表示向量a与b的内积.如果a.b=0称a与b正交.设它们的夹角为台,按定义有a . b = a bcos 台.?0.3.2内积的性质La与b正交的充分必要条件是a, b之一为零向量或它们是互相垂直的 非零向量.2 .向量的内积满
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数与解析几何 中科大 线性代数 解析几何 讲义 预备 知识