高数-级数.docx
《高数-级数.docx》由会员分享,可在线阅读,更多相关《高数-级数.docx(29页珍藏版)》请在优知文库上搜索。
1、需等教学(下)自学、复习参考咨料m运用前请具体阅读后面所附的“运用指南”授课老师:杨峰(省函授总站高级讲师)剧烈建议同志们以综合练习为纲,细致驾驭其中的全部习题内容!各章复习范围:第一部分矢量代数与空间解析几何第八章第一至六节、第八节(即是除了第七节之外都要复习)其次部分多元函数微积分第九章第一至五节(其中第四节只要求“全微分”)第十章第一至三节、第五节(即是第四、六节暂不作要求)第三部分级数论第十一章都要复习敬告学员一一本门课程复习资料我们是依据听课和教研的基本状况结合自己的理解、加工,尽量全面、系统地整理出来,但是也只能供大家参考运用而已,并不能代表考试的任何信息,特此说明。不便之处,敬请
2、宽恕!另外,以后象这样的数理学科,众所周知,其难度较大,数字稍作变更,很多同志未必能做出来。因此,这些科目的面授课建议大家都能克服困难,主动地参与,以获得精确的学问和复习信息,否则光是依靠网上复习参考资料,随时有不能一次通过的危急。第十一章级数一、常数项级数的概念与性质(了解)1、无穷级数的概念设有无穷数列则式子Uy+2+Un+,7_OO_称为无穷级数,简称级数。记作士二V1.no即n=IAM%+2+,+,n=其中U,“2,一,叫做级数的项,而Un叫做级数的一般项或通项,各项都是常数的级数称为常数级数。例如1+2+3h(-H,1111IH-+HF332333就是常数项级数。2、级数的收敛与发散
3、定义设级数“1+2+h+,当n无限增大时,假如部分和数列3有极限S,即Iimsn则称该无穷级数是收敛的,这时极限S叫做级数的和,并写成S=+2+*,+Hf1.+,,假如数列S的极限不存在,则称该无穷级数发散,这时级数没有和。3、级数的基本性质性质1级数各项同乘以一个不为零的常数后,其敛散性不变。性质2收敛级数可以逐项相加或相减。即设有两个收敛级数S=%+M9+Uf1.+*,=V1+V2H1-VnH,则级数(%)+(2吗)+(%?匕J+=S5。性质3在级数前面加上(或去掉)有限项,其敛散性不变。(因此我们分析级数的敛散性时可忽视前面的一些项。)性质4收敛级数加括号后所成的级数仍旧收敛,且和不变。
4、4、级数收敛的必要条件OO重要定理若级数收敛,则当8时,一般项趋于零,72=1即Iimm=0o00所以一般项趋于零是级数收敛的必要条件。换言之,若Umw,则级nQO数发散。(这是推断一个级数发散常用的方法之一)AZ=I二、正项级数及其判敛法假如级数+“2T卜T,的各项都是非负数(即之0,n=1.,2,),则称这个级数为正项级数。1、比较判别法(会用)OOOoOO设两个正项级数V1.n和,假如级数AZ=IZ=1AZ=IOO收敛,且乙伽二1,2,),则级数21.也收敛;假如级数AZ=IOOOOv-发散,且乙V5=12),则级数:也发散。Z=1M=I应熟记的几个级数的敛散性:(1)等比级数(几何级数
5、)SC1.当41时.,等比级数gr1收敛,且和为二二;当“1时,等比n=1.oo级数i发散。n=(2)调和级数与土是发散的。(3)P一级数8OOJ当p1.时,P级数正下发散;当八1时P级数自”收敛。2、比值判敛法(驾驭)OO定理设正项级数2有77=1Iim=pwun则当夕1时,级数发散;当夕=1时级数可能收敛,也可能发散。三、交织级数及其判敛法1、级数2+“3+.,+(D1+*,其中“0(n=1.,2,)称为交织级数。2、交织级数判敛法(莱布尼兹判敛法)8假如交织级数Z(T)巴二2)满意下列条件:ZZ=I(1) Unun+i(=1.,2,);(2) Ijm=onOO则交织级数Z(T严&=J2)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 级数