“四个理解”视角下的正弦定理教学研究 论文.docx
《“四个理解”视角下的正弦定理教学研究 论文.docx》由会员分享,可在线阅读,更多相关《“四个理解”视角下的正弦定理教学研究 论文.docx(6页珍藏版)》请在优知文库上搜索。
1、“四个理解”视角下的正弦定理教学研究【摘要】章建跃博士在2017年4月进一步完善了他所提出的“四个理解”,即理解数学、理解学生、理解教学、理解技术。在新课标的指引下,本文基于“四个理解”,对高中教材人教版(2019)必修二第六章第四节平面向量的应用第二课时正弦定理进行探讨,教材将本节课放在平面向量和三角函数的后面,起到了承前启后的作用。本节课从理解数学、理解学生、理解教学、理解技术的角度进行分析探究,利用微课、f1.ash动画、几何画板等技术手段对一般三角形的边角关系进行研究,让学生发现并掌握一般三角形中边角之间的数量关系,找到各边及其所对应角的正弦的比值是定值,得出正弦定理,进而应用定理解三
2、角形,解决一些数学问题及生产生活实际问题。从而,以点带面,提升课堂教学的效率和学生理解的深度,为落实大单元教学理念,发展学生的数学核心素养提供了帮助和支持。关键词四个理解正弦定理核心素养本文的教学设计理念来自于对“四个理解”的认识,在教学过程中,教师以“正弦定理的发现、证明”为基本的探究内容,通过不断应用微课、几何画板、f1.ash动画等技术手段进行不断的启发和引导,让学生进行积极的思考,为学生提供质疑、探究、讨论、自由表达的机会,经历完整的知识形成过程,培养学生积极发现规律,探索规律,总结规律,证明结论的能力,培养了学生的数学抽象、直观想象、逻辑推理、数学建模等核心素养。一、从本质特征上理解
3、数学正、余弦定理揭示了三角形边角之间的关系,正、余弦定理及其探究过程将平面几何、三角函数、向量运算等知识联系起来,反映出模块之间、单元内部知识的交融,突出体现了三角函数和平面向量的工具性价值。在上一课时学生已学习余弦定理的相关内容,能解决部分类型的解三角形问题,对于不能使用余弦定理来解决的解三角形问题,就迫切的需要探究新的方法和定理,完善知识体系,因此,探究正弦定理是对前期学习的延续和补充。定理的发现源自测量问题,在下一课时教材也将利用正、余弦定理来解决一些测量问题,所以本课也是对后续内容的铺垫,也是本单元和本节的重点。因此,本节课的教学无论从数学思想上,还是数学方法上让学生经历“生活情境引入
4、一数学抽象一问题解决一定理探究一定理证明一定理应用”的过程,理解掌握正弦定理并能进行简单计算。学生经历了用向量法证明正弦定理的过程,体会数学对象之间的转化,以汴河博物馆到河对岸的距离测量情境引入,激发学生的探究热情,培养学生的数学抽象、逻辑推理、数学建模的素养,树立学生由特殊到一般、数形结合的数学思想意识,最终寻求三角形边角之间的关系。二、从思维规律上理解学生学生在上一课已经学习了余弦定理,学习了作高法、坐标法和向量法证明余弦定理,将一般三角形分割为学生所熟悉的直角三角形来研究是初中常用做法,因此,作高法证明正弦定理可交由学生提出并解决,教师作适当补充,而对于利用向量法证明正弦定理,存在一定难
5、度,学生可能存在的困难是:向量积公式中的余弦如何转化为正弦;利用向量证明等式成立的意识不强,这两方面需要教师多加引导。正弦定理这节课,教师带领学生从已有的知识结构进行出发,对实际问题积极探索发现总结,构建数学模型,采取观察猜想-验证-发现,并加以证明,最后进行简单的应用。教师根据特殊情景提出问题,让学生进行分析问题,探究问题,总结规律从而得出定理,并对具体问题简单应用,让学生真正成为正弦定理的“发现者”、“创造者”、“实施者”。教学过程中,学生要充分发挥多媒体的作用,大胆创新,激发学生的思维,渗透数形结合、转化、划归等数学思想,发挥学生的主动性、积极性、自觉性,让学生体会知识探究及再创造的过程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- “四个理解”视角下的正弦定理教学研究 论文 四个 理解 视角 正弦 定理 教学研究