医疗人工智能行业发展历程分析.docx
《医疗人工智能行业发展历程分析.docx》由会员分享,可在线阅读,更多相关《医疗人工智能行业发展历程分析.docx(7页珍藏版)》请在优知文库上搜索。
1、医疗人工智能行业发展历程分析一、行业发展概述人工智能是利用数字计算机控制的机器模拟、延伸和扩展人的智能,感知环境、获取知识并使用知识获得最佳结果的理论、方法、技术及应用系统。随着人工智能理论和相关Al模型的发展,人工智能产品逐渐开启了在医疗领域用场景中的探索与应用。人工智能在医疗相关各环节均有应用,在诊前可用于疾病预测及健康管理,在临床就诊中可用于疾病的辅助诊断及辅助治疗手术规划等,能有效降低误诊率和手术风险,在就诊后可以用于预后随访及病程管理,还可以服务于药物研发、临床研究等环节。人工智能技术在医疗场景中的数据智能化全方位赋能是未来发展的必然趋势。医学影像是利用光、电、磁、声等物理现象,以非
2、侵入方式获得人体或人体某部分内部组织的影像。临床超过70%的诊断都依赖于医学影像。临床中最常见的影像模态包括X线摄影、CT、MRl和超声等。医学影像具有直观、多模态、高像素精度、病灶表像样本各异、任务复杂多样的特点,其占据了医疗数据总量的90%以上,是临床医疗中最重要的“证据”来源之一。医学影像数据具有标准化程度高的优势,适宜进行人工智能机器学习及深度学习。医学影像的模态和疾病种类均较为丰富,造就了其临床诊断场景应用的复杂度。人工智能应用于医学影像,主要是通过深度学习实现机器对医学影像的分析判断,帮助医生更快获取影像信息,进行定性定量分析,提升医生阅片效率,协助发现隐藏病灶,协助医生完成诊断工
3、作。人工智能通过影像分类、目标检测、图像分割、图像检索等方式,完成病灶识别与标注、三维重建、靶区自动勾画与自适应放疗等功能,应用在疾病的筛查、诊断和治疗阶段。人工智能医学影像辅助诊断的快速发展,为医生提供全方位影像判读的支持,已经逐步实现了快速阅片、报告解读、辅助医生诊断治疗等具体应用,未来有望显著提高疾病诊断、治疗和健康管理的诊断效率、准确性、可及性。二、行业基本风险特征1、技术研发风险医疗人工智能行业属于技术密集型行业,综合应用了机器学习算法模型、深度学习、计算机视觉及大数据分析等多种技术,在医疗场景应用中技术水平直接影响产品性能和用户体验。人工智能技术正处于快速发展阶段,新技术研发和革新
4、速度较快。只有密切跟踪并深入研究技术发展趋势,不断进行新业务的开发和拓展以满足快速变化的市场需求,才能保证在行业当中保持领先的竞争优势。2、市场竞争日趋激烈风险我国在医学影像人工智能领域具有巨大潜力,但产业规模依然较小,处于初期快速发展阶段,良好的前景吸引了投资者的加入,行业内企业快速成长,但目前产业需要的配套资源比较分散,缺乏标准支撑,服务能力有限,国内企业处于各自为战的状态,未来市场竞争将会进一步加剧。3、专业人才缺乏风险医学影像人工智能行业依赖于具备复合学科背景的专业研发人员。研发人员需具备对人工智能算法的专业开发能力,同时需对医疗影像行业有着较为深刻的临床场景理解。专业人才相对缺乏,未
5、来对技术人才的争夺必将日趋激烈,行业中存在着技术人员流失风险。三、市场规模全球人工智能医疗器械市场规模从2016年的0.87亿美元增长至2020年的3.56亿美元,2016至2020年的年复合增长率为42.4%。预计未来五年将增长至2025年的177.02亿美元,2020年至2025年的年复合增长率将为118.5%,2030年将进一步达1,136.77亿美元。我国人工智能影像医疗器械处于初期起步的快速发展阶段,随着市场需求不断增加,2020年底药监局启动了对影像辅助诊断医疗器械的注册批准,开启了我国医学影像人工智能辅助诊断产品从研发到落地的商业化推进之路。伴随监管审批效率的逐渐提高,近两年我国
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医疗 人工智能 行业 发展 历程 分析