大学物理动量与角动量.ppt
《大学物理动量与角动量.ppt》由会员分享,可在线阅读,更多相关《大学物理动量与角动量.ppt(40页珍藏版)》请在优知文库上搜索。
1、力的瞬时效应:牛顿第一、第二、第三定律与力的累积效应(空间累积、时间累积)相关的三个定理:动量定理、动能定理、角动量定理特殊情况下就有:动量守恒定律、机械能守恒定律、角动量守恒定律守恒量:对于物体系统内发生的各种过程,如果某物理量始终保持不变,则称其为守恒量。表面上看,能量、动量和角动量三个定律仅是牛顿第二定律的数学变形,但是实际上它们是更为基本的物理量,它们的守恒定律具有更广泛、更深刻的意义。(力对时间的积累效应)(力对时间的积累效应)冲量冲量:力和力作用时间的乘积:力和力作用时间的乘积 (单位:牛顿(单位:牛顿秒秒 (Ns))21ttdtFI动量动量:质点质量:质点质量 m 和速度和速度
2、的乘积的乘积 vvmP单位:千克单位:千克米米秒秒-1 (kgms-1)12ttFI恒力恒力变力变力在 dt 时间内的元冲量:dtFId在 t1至 t2 时间段内的冲量:一、质点的动量定理一、质点的动量定理amF牛顿第二定律dtpddtvmddtvdmFpptppvmvmvmddtFI012120)(作用于质点上的合力的冲量等于同一时间内作用于质点上的合力的冲量等于同一时间内质点动量的增量质点动量的增量质点的动量定理质点的动量定理)( vmddtF微分形式积分形式zzttzyyttyxxttxmvmvdtFmvmvdtFmvmvdtF121212212121分量表示式:分量表示式:120vmv
3、mdtFIt质点动量定理只适用于惯性系的方向相同的方向与方向:)( vmI动量:与动力学有密切的关系,是动力学参量。速度:只是从运动学角度描述物体的运动状态。 动量比速度更能反映物体的运动状态。机械运动与机械运动转换时,数量关系可以用动量或动能来量度。机械运动与非机械运动转换时,只能用动能来量度。累积作用相关变化量与力在空间上的:动能累积作用相关变化量与力在时间上的:动量rdFAEEdtFPPkk fj i fi j 二二 质点系动量定理质点系动量定理 (theorem of momentum of particle system)Fipi为质点为质点 i 受的合外力,受的合外力,iFi j质
4、点系质点系 为质点为质点 i 受质点受质点 j 的内力,的内力,ijfip为质点为质点 i 的动量。的动量。对质点对质点 i :ddiijij iFftp()对质点系:对质点系:(ddiijiij iiFftp)0ijij if由牛顿第三定律有:由牛顿第三定律有:(ddiiiiFtp)所以有:所以有: iiiiFFpP外,令令ddFtP外则有:则有:ddPFt外或或质点系动量定理质点系动量定理(微分形式)(微分形式)2121dttFtPP外质点系动量定质点系动量定理(积分形式)理(积分形式)用质点系动量定理处理问题可避开内力。用质点系动量定理处理问题可避开内力。系统总动量由外力的冲量决定,与内
5、力无关。系统总动量由外力的冲量决定,与内力无关。 3.2动量守恒定律动量守恒定律这就是这就是质点系的动量守恒定律。质点系的动量守恒定律。即即几点说明:几点说明: 1.动量守恒定律是牛顿第二定律的必然推论。动量守恒定律是牛顿第二定律的必然推论。 2.动量定理及动量守恒定律只适用于惯性系。动量定理及动量守恒定律只适用于惯性系。 质点系所受合外力为零时,质点系所受合外力为零时,质点系的总动量质点系的总动量不随时间改变。不随时间改变。(law of conservation of momentum)0 iiiiFP时,常矢量 4.若某个方向上合外力为零,若某个方向上合外力为零, 5.当外力当外力内力内
6、力 6.动量守恒定律是比牛顿定律更普遍、更基本动量守恒定律是比牛顿定律更普遍、更基本则该方向上动则该方向上动尽管总动量可能并不守恒。尽管总动量可能并不守恒。量守恒,量守恒,且作用时间极短时且作用时间极短时 (如碰撞),(如碰撞),可认为动量近似守恒。可认为动量近似守恒。的定律,的定律, 它在宏观和微观领域均适用。它在宏观和微观领域均适用。7.用守恒定律作题,应注意分析用守恒定律作题,应注意分析 过程、系统过程、系统 切惯性系中均守恒。切惯性系中均守恒。3. 动量若在某一惯性系中守恒,动量若在某一惯性系中守恒, 则在其它一则在其它一和条件。和条件。 粘附粘附 主体的质量增加(如滚雪球)主体的质量
7、增加(如滚雪球) 抛射抛射 主体的质量减少(如火箭发射)主体的质量减少(如火箭发射) 低速(低速(v c)情况下的两类变质量问题:)情况下的两类变质量问题:下面以火箭飞行为例,讨论变质量问题。下面以火箭飞行为例,讨论变质量问题。 3.3 变质量系统、火箭飞行原理变质量系统、火箭飞行原理 这是相对论情形,这是相对论情形,不在本节讨论之列。不在本节讨论之列。以随速度改变以随速度改变 m = m(v),情况下,情况下,还有另一类变质量问题是在高速(还有另一类变质量问题是在高速(v c)这时即使没有粘附和抛射,质量也可这时即使没有粘附和抛射,质量也可条件:燃料相对箭体以恒速条件:燃料相对箭体以恒速u喷
8、出喷出初态:系统质量初态:系统质量 M,速度,速度v (对地对地),动量,动量 M v 一一. 火箭不受外力情形火箭不受外力情形(在自由空间飞行)(在自由空间飞行) 1.火箭的速度火箭的速度系统:系统: 火箭壳体火箭壳体 + 尚存燃料尚存燃料总体过程:总体过程:i (点火点火) f (燃料烧尽燃料烧尽)先分析一先分析一微过程:微过程: t t +dt末态:喷出燃料后末态:喷出燃料后喷出燃料的质量:喷出燃料的质量:dm = - dM,喷出燃料速度喷出燃料速度(对地对地): v - uvu火箭壳体火箭壳体 +尚存燃料的质量:尚存燃料的质量: M - dm系统动量:系统动量: ( M- dm)(v
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 动量 角动量