去均值化和白化.docx
《去均值化和白化.docx》由会员分享,可在线阅读,更多相关《去均值化和白化.docx(2页珍藏版)》请在优知文库上搜索。
1、PCA:PCA的具有2个功能,一是维数约简(可以加快算法的训练速度,减小内存消耗等),一是数据的可视化。PCA并不是线性回归,因为线性回归是保证得到的函数是y值方面误差最小,而PCA是保证得到的函数到所降的维度上的误差最小。另外线性回归是通过X值来预测y值,而PCA中是将所有的X样本都同等对待。在使用PCA前需要对数据进行预处理,首先是均值化,即对每个特征维,都减掉该维的平均值,然后就是将不同维的数据范围归一化到同一范围,方法一般都是除以最大值。但是比较奇怪的是,在对自然图像进行均值处理时并不是不是减去该维的平均值,而是减去这张图片本身的平均值。因为PCA的预处理是按照不同应用场合来定的。自然
2、图像指的是人眼经常看见的图像,其符合某些统计特征。一般实际过程中,只要是拿正常相机拍的,没有加入很多人工创作进去的图片都可以叫做是自然图片,因为很多算法对这些图片的输入类型还是比较鲁棒的。在对自然图像进行学习时,其实不需要太关注对图像做方差归一化,因为自然图像每一部分的统计特征都相似,只需做均值为。化就Ok了。不过对其它的图片进行训练时,比如首先字识别等,就需要进行方差归一化了。PCA的计算过程主要是要求2个东西,一个是降维后的各个向量的方向,另一个是原先的样本在新的方向上投影后的值。首先需求出训练样本的协方差矩阵,如公式所示(输入数据已经均值化过):mi=l求出训练样本的协方差矩阵后,将其进
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 均值 白化
