弹性力学04(习题答案).ppt
《弹性力学04(习题答案).ppt》由会员分享,可在线阅读,更多相关《弹性力学04(习题答案).ppt(45页珍藏版)》请在优知文库上搜索。
1、(习题讲解)(习题讲解)习题习题4-1试导出位移分量的坐标变换式试导出位移分量的坐标变换式sincosvuurcossinvuusincosuuurcossinuuvrrASuvruuxyo习题习题4-2设有内径为设有内径为 a 而外径为而外径为 b 的圆筒受内压力的圆筒受内压力 q ,试求内半径,试求内半径及外半径的改变,并求圆筒厚度的改变。及外半径的改变,并求圆筒厚度的改变。解:解:轴对称问题的径向位移公式(轴对称问题的径向位移公式(平面应变平面应变):):sincos)21 (2KICrBrrBrrAEur)41 () 1(ln)21 (21对于圆筒轴对称问题,有对于圆筒轴对称问题,有
2、ur 不随不随 变化,即变化,即0 KICrrAEur)21 (21又由又由位移单值条件位移单值条件,有,有0B常数常数A、B由应力边界条件确定。由应力边界条件确定。应力分量:应力分量:CrAr22边界条件:边界条件:qarr0brrqCaA22022 CbAqabbaA2222qabaC2222CrrAEur)21 (21qabbaA2222qabaC2222rrbqabEaur)21 ()(122221)(122222ababqEauarr)(21222ababEaqubrr112ababqEauuarrbrr习题习题4-3 设有刚体,具有半径为设有刚体,具有半径为 b 的圆柱形孔道,孔道
3、内放置一外的圆柱形孔道,孔道内放置一外半径为半径为 b而内半径为而内半径为 a的圆筒,受内压力的圆筒,受内压力 q ,试求圆筒壁,试求圆筒壁的应力。的应力。解:解:刚体边界条件:边界条件:qarr0arr0brruCrrAEur)21 (21CrAr22代入边界条件,有代入边界条件,有qCaA220)21 (2CbbAqabbaA2222)21 ()21 (qabaC222)21 (2CrA220r将常数将常数A、C 代入,有代入,有将常数将常数A、C 代入,有代入,有)211()21 (222222rbqabba)211()21 (222222rbqabbar刚体CrAr22CrA220rq
4、abbaA2222)21 ()21 (qabaC222)21 (2)211()21 (222222abqabba)211()21 (222222abqabbarar q习题习题4-4矩形薄板受纯剪,剪力集度为矩形薄板受纯剪,剪力集度为q,如图所示。如果离板边较远,如图所示。如果离板边较远处有一小圆孔,试求孔边的最大和最小正应力。处有一小圆孔,试求孔边的最大和最小正应力。qqqqqqqq 45解:解:xyrqqxyr(a)由图(由图(a)给出的孔)给出的孔边应力结果:边应力结果:)2cos21 ( q得:得:)45(2cos21q)45(2cos21q2sin21 q2sin21q2sin4qq
5、4maxq4min习题习题4-5楔形体在两侧受有均布剪应力楔形体在两侧受有均布剪应力q,如图所示。试求其应力分量。,如图所示。试求其应力分量。xyOqq22解:解: (1)应力函数)应力函数 的确定的确定),(r由因次分析法,可知由因次分析法,可知)(2fr代入相容方程:代入相容方程:011222222rrrr得到:得到:0)(4)(122442dfddfdr0)(4)(2244dfddfdDCBAf2sin2cos)()(2fr)2sin2cos(2DCBAr(2)应力分量的确定)应力分量的确定DCBAr222sin22cos2DCBA222sin22cos2CBAr2cos22sin2)(
6、2fr)2sin2cos(2DCBArxyOqq22由由对称性对称性,,r应为应为 的偶函数的偶函数;r应为应为 的奇函数的奇函数,因而有,因而有,0 CB(3)由边界条件确定常数)由边界条件确定常数边界条件:边界条件:DAr22cos2DA22cos22sin2Ar02qr2代入,有:代入,有:02cos2 DAqAsin2sin2qA cot2qD代入应力分量式,有代入应力分量式,有22211rrrr22rrrr1DAr22cos2DA22cos22sin2ArxyOqq22代入应力分量式,有代入应力分量式,有sin2qA cot2qDcotsin2cosqrsin2sinqrcotsin
7、2cosqr习题习题4-6三角形悬臂梁在自由端受集中荷载三角形悬臂梁在自由端受集中荷载 P,如图所示。试用公式,如图所示。试用公式(4-21)求任一铅直截面上的正应力和剪应力,并与材料力学)求任一铅直截面上的正应力和剪应力,并与材料力学中的结果对比。中的结果对比。xyO22P)sinsin(2rPr解:解:由密切尔(由密切尔( J. H. Michell )解答,得)解答,得0, 0r2sin2cos22rrrx2sin2cos22rrry2cos2sin2rrxy由应力分量的坐标变换式:由应力分量的坐标变换式:2cos22rrx)2cos1)(sinsin(rP2cos22rry)2cos1
8、)(sinsin(rP00rr)sinsinsinsincoscos(2rPr (4-21) 密切尔(密切尔( J. H. Michell )解答)解答2sin2cos22rrrx2sin2cos22rrry2cos2sin2rrxy2cos22rrx)2cos1)(sinsin(rP2cos22rry)2cos1)(sinsin(rP2sin2rxy2sin)sinsin(rP由坐标变换式:由坐标变换式:22yxrsin,cosryrx,)(sin22222yxyxPx,)(sin22223yxyPy,)(sin22222yxxyPxy,)(sin22222yxyxPx,)(sin22222
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 弹性 力学 04 习题 答案
