第37讲 对策问题.docx
《第37讲 对策问题.docx》由会员分享,可在线阅读,更多相关《第37讲 对策问题.docx(4页珍藏版)》请在优知文库上搜索。
1、第37讲对策问题一、知识要点同学们都熟悉“田忌与齐王赛马”的故事,这个故事给我们的启示是:田忌采用了“扬长避短”的策略,取得了胜利。生活中的许多事物都蕴含着数学道理,人们在竞赛和争斗中总是玩游戏,大至体育比赛、军事较量等,人们在竞赛和争斗中总是希望自己或自己的一方获取胜利,这就要求参与竞争的双方都要制定出自己的策略,这就是所谓“知己知彼,百战不殆。哪一方的策略更胜一筹,哪一方就会取得最终的胜利。解决这类问题一般采用逆推法和归纳法。二、精讲精练【例题1】两个人做一个移火柴的游戏,比赛的规则是:两人从一堆火柴中可轮流移走1至7根火柴,直到移尽为止。挨到谁移走最后一根火柴就算谁输。如果开始时有100
2、0根火柴,首先移火柴的人在第一次移走多少根时才能在游戏中保证获胜。先移火柴的人要取胜,只要取走第999根火柴,即利用逆推法就可得到答案。设先移的人为甲,后移的人为乙。甲要取胜只要取走第999根火柴。因此,只要取到第991根就可以了(如乙取1根甲就取7根;如乙取2根甲就取6根。依次类推,甲取的与乙取的之和为8根火柴)。由此继续推下去,甲只要取第983根,第975根,第7根就能保证获胜。所以,先移火柴的人要保证获胜,第一次应移走7根火柴。练习1:1、一堆火柴40根,甲、乙两人轮流去拿,谁拿到最后一根谁胜。每人每次可以拿1至3根,不许不拿,乙让甲先拿。问:谁能一定取胜?他要取胜应采取什么策略?2、两
3、人轮流报数,规定每次报的数都是不超过8的自然数,把两人报的数累加起来,谁先报到88,谁就获胜。问:先报数者有必胜的策略吗?3、把1994个空格排成一排,第一格中放一枚棋子,甲、乙两人轮流移动棋子,每人每次可后移1格、2格、3格,谁先移到最后一格谁胜。先移者确保获胜的方法是什么?【例题2】有1987粒棋子。甲、乙两人分别轮流取棋子,每次最少取1粒,最多取4粒,不能不取,取到最后一粒的为胜者。现在两人通过抽签决定谁先取。你认为先取的能胜,还是后取的能胜?怎样取法才能取胜?从结局开始,倒推上去。不妨设甲先取,乙后取,剩下1至4粒,甲可以一次拿完。如果剩下5粒棋子,则甲不能一次拿完,乙胜。因此甲想取胜
4、,只要在某一时刻留下5粒棋子就行了。不妨设甲先取,则甲能取胜。甲第一次取2粒,以后无论乙拿几粒,甲只要使自己的粒数与乙拿的粒数之和正好等于5,这样,每一轮后,剩下的棋子粒数总是5的倍数,最后总能留下5粒棋子,因此,甲先取必胜。练习2:1、甲、乙两人轮流从1993粒棋子中取走1粒或2粒或3粒,谁取到最后一粒的是胜利者,你认为先取的能获胜,还是后取的能获胜,应采取什么策略?2、有1997根火柴,甲、乙两人轮流取火柴,每人每次可取1至10根,谁能取到最后一根谁为胜利者,甲先取,乙后取。甲有获胜的可能吗?取胜的策略是什么?3、盒子里有47粒珠子,两人轮流取,每次最多取5粒,最少取1粒,谁最先把盒子的珠
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第37讲 对策问题 37 对策 问题
