数学建模传染病模型.ppt
《数学建模传染病模型.ppt》由会员分享,可在线阅读,更多相关《数学建模传染病模型.ppt(8页珍藏版)》请在优知文库上搜索。
1、 传染病模型传染病模型 传染病是人类的大敌,通过疾病传播过程中若干重要因传染病是人类的大敌,通过疾病传播过程中若干重要因素之间的联系建立微分方程加以讨论,研究传染病流行的规素之间的联系建立微分方程加以讨论,研究传染病流行的规律并找出控制疾病流行的方法显然是一件十分有意义的工作。律并找出控制疾病流行的方法显然是一件十分有意义的工作。在本节中,我们将主要用多房室系统的观点来看待传染病的在本节中,我们将主要用多房室系统的观点来看待传染病的流行,并建立起相应的多房室模型。流行,并建立起相应的多房室模型。 医生们发现,在一个民族或地区,当某种传染病流传时,医生们发现,在一个民族或地区,当某种传染病流传时
2、,波及到的总人数大体上保持为一个常数。即既非所有人都会波及到的总人数大体上保持为一个常数。即既非所有人都会得病也非毫无规律,两次流行(同种疾病)的波及人数不会得病也非毫无规律,两次流行(同种疾病)的波及人数不会相差太大。如何解释这一现象呢?试用建模方法来加以证明。相差太大。如何解释这一现象呢?试用建模方法来加以证明。 问题的提出:问题的提出: 设某地区共有设某地区共有n+1人,最初时刻共有人,最初时刻共有i人得病,人得病,t时刻已时刻已感染(感染(infective)的病人数为)的病人数为i(t),假定每一已感染者在单位,假定每一已感染者在单位时间内将疾病传播给时间内将疾病传播给k个人(个人(
3、k称为该疾病的传染强度),且称为该疾病的传染强度),且设此疾病既不导致死亡也不会康复设此疾病既不导致死亡也不会康复模型模型1 此模型即此模型即MalthusMalthus模型,它大体上反映了传染病流行初期模型,它大体上反映了传染病流行初期的病人增长情况,在医学上有一定的参考价值,但随着时间的的病人增长情况,在医学上有一定的参考价值,但随着时间的推移,将越来越偏离实际情况。推移,将越来越偏离实际情况。 已感染者与尚未感染者之间存在着明显的区别,有必要将已感染者与尚未感染者之间存在着明显的区别,有必要将人群划分成已感染者与尚未感染的易感染,对每一类中的个体人群划分成已感染者与尚未感染的易感染,对每
4、一类中的个体则不加任何区分,来建立两房室系统。则不加任何区分,来建立两房室系统。 ( )odikidti oi则可导出:则可导出:故可得:故可得: ( )ktoi ti e(3.15) 模型模型2 记记t时刻的病人数与易感染人数时刻的病人数与易感染人数(susceptible)分别为分别为i(t)与与s(t),初始时刻的病人数为,初始时刻的病人数为 i。根据病人不死也不会康。根据病人不死也不会康复的假设及(竞争项)统计筹算律,复的假设及(竞争项)统计筹算律, 1oooicni 其中:其中:(1)(1)(1)( )1k ntok ntoc nei tc e解得:解得:(3.17)( )( )1(
5、 )odikisdti ts tni oi可得:可得:(3.16) 统计结果显示,统计结果显示,( (3.173.17) )预报结果比预报结果比( (3.153.15) )更接近实际情况。医学上称曲线更接近实际情况。医学上称曲线 为传染病为传染病曲线,并称曲线,并称 最大值时刻最大值时刻t1为此传染病的流行为此传染病的流行高峰。高峰。ditdtdidt220d idt令:令:1ln(1)octk n 得:得:此值与传染病的实际高峰期非常接近,可用作医学上的预报公式。 模型模型2 2仍有不足之处,它仍有不足之处,它无法解释医生们发现的现无法解释医生们发现的现象,且当时间趋与无穷时,象,且当时间趋
6、与无穷时,模型预测最终所有人都得模型预测最终所有人都得病,与实际情况不符。病,与实际情况不符。 为了使模型更精为了使模型更精确,有必要再将确,有必要再将人群细分,建立人群细分,建立多房室系统多房室系统infectiverecoveredsusceptiblekl (1) (2)( )( )( )1 (3), ( )0odiksilidtdrlidts ti tr tni(o)i r o(3.18) l 称为传染病恢复系数 求解过程如下:求解过程如下: 对(对(3)式求导,由()式求导,由(1)、()、(2)得:)得: dskdrksisdtldt ( )( )kr tlos ts e解得:解得
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 建模 传染病 模型