心理统计学PPT课件6:推断统计学原理.ppt
《心理统计学PPT课件6:推断统计学原理.ppt》由会员分享,可在线阅读,更多相关《心理统计学PPT课件6:推断统计学原理.ppt(35页珍藏版)》请在优知文库上搜索。
1、推断统计学原理推断统计学原理 抽样分布(抽样分布(sampling distribution) 参数估计(参数估计(parameter estimation) 假设检验(假设检验(hypothesis testing) 抽样分布是参数估计与假设检验的抽样分布是参数估计与假设检验的理论基础理论基础三种不同性质的分布三种不同性质的分布 总体分布(总体分布(population distribution):总):总体内个体数值的次数分布。体内个体数值的次数分布。 样本分布(样本分布(sample distribution):样本):样本内个体数值的次数分布。内个体数值的次数分布。 抽样分布(抽样分布
2、(sampling distribution):根:根据所有可能的样本观察值计算出来的某一据所有可能的样本观察值计算出来的某一种种统计量的观察值统计量的观察值的概率分布。的概率分布。从总体分布到抽样分布从总体分布到抽样分布 总体总体X的概率分布的概率分布 这是一个均匀分布(这是一个均匀分布(uniform distribution)总体)总体住户住户第一户第一户第二户第二户第三户第三户第四户第四户 第五户第五户日支出日支出(X)2025303540户数户数11111概率概率0.200.200.200.200.20总体平均数和总体方差总体平均数和总体方差 305)4035302520(1NXNi
3、i50)(122NXNii样本(样本(n=2)的所有可能结果)的所有可能结果第一户第一户第二户第二户第三户第三户第四户第四户第五户第五户第一户第一户(20, 20)M=20(25,20)M=22.5(30,20)M=25(35,20)M=27.5(40,20)M=30第二户第二户(20,25)M=22.5(25,25)M=25(30,25)M=27.5(35,25)M=30(40,25)M=32.5第三户第三户(20,30)M=25(25,30)M=27.5(30,30)M=30(35,30)M=32.5(40,30)M=35第四户第四户(20,35)M=27.5(25,35)M=30(30,
4、35)M=32.5(35,35)M=35(40,35)M=37.5第五户第五户(20,40)M=30(25,40)M=32.5(30,40)M=35(35,40)M=37.5(40,40)M=40样本(样本(n=2)的平均数的抽样分布)的平均数的抽样分布平平均均数数2022.52527.53032.53537.540次次数数123454321概概率率.04.08.12.16.20.16.12.08.04样本样本(n=2)的平均数的抽样分布图的平均数的抽样分布图0 00.050.050.10.10.150.150.20.2202025253030353540400 00.050.050.10.1
5、0.150.150.20.2202022.522.5252527.527.5303032.532.5353537.537.54040不同总体情况下的抽样分布不同总体情况下的抽样分布示意图示意图抽样分布的定理抽样分布的定理 设总体设总体X服从分布服从分布F(x),(,(X1,X2,Xn)是抽自该总体的一个简单随机样本)是抽自该总体的一个简单随机样本(simple random sample),总体均值与),总体均值与样本均值、总体方差与样本均值的方差样本均值、总体方差与样本均值的方差有如下关系:有如下关系:XXE)(nXDX22)(抽样分布的定理抽样分布的定理 从总体中随机抽出容量为从总体中随机
6、抽出容量为n的一切可能样的一切可能样本的平均数之平均数等于总体的平均数;本的平均数之平均数等于总体的平均数; 从总体中随机抽出容量为从总体中随机抽出容量为n的一切可能样的一切可能样本的平均数的方差,等于总体方差除以本的平均数的方差,等于总体方差除以n样本(样本(n=2)平均数的平均数和方差)平均数的平均数和方差NXNiiX1=(20+22.52+253+27.54+305+32.54+353+37.52+40)/25= 30 25)(122NXNiXX样本均值的抽样分布(样本均值的抽样分布(2已知已知)若(若(X1,X2,Xn)是抽自总体)是抽自总体X的一个容量为的一个容量为n的简单随机样本,
7、则依据的简单随机样本,则依据样本的所有可能观察值计算出的样本均样本的所有可能观察值计算出的样本均值的分布,称为样本均值的抽样分布。值的分布,称为样本均值的抽样分布。样本均值的抽样分布样本均值的抽样分布 定理定理设(设(X1,X2,Xn)是抽自正态分)是抽自正态分布总体布总体XN(, 2)的一个容量为的一个容量为n的简单的简单随机样本,则其样本均值也是一个正态随机样本,则其样本均值也是一个正态分布随机变量,且有分布随机变量,且有样本均值的抽样分布样本均值的抽样分布XXE)(nXDX22)(),(2nNX)1 , 0(/2NnXZ例题例题 某类产品的强度服从正态分布,总体平某类产品的强度服从正态分
8、布,总体平均数为均数为100,总体标准差为,总体标准差为5。从该总体。从该总体中抽取一个容量为中抽取一个容量为25的简单随机样本,的简单随机样本,求这一样本的样本均值介于求这一样本的样本均值介于99101的概的概率。如果容量为率。如果容量为100呢?呢?样本均值的抽样分布(样本均值的抽样分布(2已知已知) 非正态总体、非正态总体、已知时已知时设总体设总体X的均值的均值和和2,当样本容量趋,当样本容量趋向无穷大时,样本均值的抽样分布趋于向无穷大时,样本均值的抽样分布趋于正态分布,且样本均值的数学期望和方正态分布,且样本均值的数学期望和方差分别为差分别为XXE)(nXDX22)(例题例题 某类产品
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 心理 统计学 PPT 课件 推断 原理