钢铁的淬火知识总结.docx
《钢铁的淬火知识总结.docx》由会员分享,可在线阅读,更多相关《钢铁的淬火知识总结.docx(11页珍藏版)》请在优知文库上搜索。
1、淬火的定义与目的将钢加热到临界点AC3(亚共析钢)或ACM过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界淬火速度的速度冷却,使过冷奥氏体转变为马氏体或下贝氏体组织的热处理工艺称为淬火.淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变而到马氏体或下贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求.也可以通过淬火满足某些特种钢材的铁磁性、耐蚀性等特殊的物理、化学性能.钢件在有物态变化的淬火介质中冷却时,其冷却过出一般分为以下三个阶段:蒸汽膜阶段、沸B阶段、对流阶段.钢的淳透性淬硬性和淬透
2、性是表征钢材接受淬火能力大小的两项性能指标,它们也是选材、用材的重要依据。1 .淬硬性与淬透性的概念淬硬性是钢在理想条件下进行淬火硬化所能达到的最高硬度的能力。决定钢淬硬性高低的主要因索是钢的含碳量,更确切地说是淬火加热时固溶在奥氏体中的含碳量,含碳量越离,钢的淬硬性也就越高.而钢中合金元素对淬硬性的影响不大,但对钢的淬透性却有重大影响.淬透性是指在规定条件下,决定钢材淬硬深度和硬度分布的特性。即钢淬火时得到淬硬层深度大小的能力,它是钢材固有的一种属性.淬透性实际上反映了钢在淬火时,奥氏体转变为马氏体的容易程度。它主要和钢的过冷奥氏体的稳定性有关,或者说与钢的临界淬火冷却速度有关.还应指出:必
3、须把钢的淬透性和钢件在具体淬火条件下的有效淬硬深度区分开来.钢的淬透性是钢材本身所固有的属性,它只取决于其本身的内部因索,而与外部因索无关;而钢的有效淬硬深度除取决于钢材的淬透性外,还与所采用的冷却介质、工件尺寸等外部因索有关,例如在同样奥氏体化的条件下,同一种钢的淬透性是相同的,但是水淬比油淬的有效淬硬深度大,小件比大件的有效淬硬深度大,这决不能说水淬比油淬的淬透性高.也不能说小件比大件的淬透性高。可见评价钢的淬透性,必须排除工件形状、尺寸大小、冷却介质等外部因素的影响.另外,由于淬透性和淬硬性也是两个概念,因此淬火后硬度高的钢,不一定淬透性就高;而硬度低的钢也可能具有很高的淬透性.2 .影
4、响淬透性的因素钢的淬透性取决于奥氏体的稳定性.凡是能提高过冷奥氏体的稳定性,使C曲线右移.从而降低临界冷却速度的因索,都能提高钢的淬透性。奥氏体的稳定性主要取决于它的化学成分、晶粒大小和成分均匀性,这些与钢的化学成分和加热条件有关.3 .淬透性的测定方法钢的淬透性的测定方法很多,常用的有临界直径测定法和端淬试验法。(1)临界直径测定法钢材在某种介质中淬冷后,心部得到全部马氏体或50%马氏体组织时的最大直径称为临界直径,以DC表示.临界直径测定法就是制作一系列直径不同的圆棒,淬火后分别测定各试样微面上沿直径分布的硬度U曲线,从中找出中心恰为半马氏体组织的画棒,该圆棒直径即为临界直径.临界直径越大
5、,表明钢的淬透性越高。(2)端淳试览法端淬试验法是用标准尺寸的端淬试样(25mm100mm),经樊氏体化后,在专用设备上对其一端面喷水冷却,冷却后沿轴线方向测出硬度距水冷端距离的关系曲线的试验方法.端淬试验法是痢定钢的淬透性的方法之-,其优点是操作简便,适用范围广.4 .淬火应力、变形及开裂(1)淬火时工件的内应力工件在淬火介质中迅速冷却时,由于工件具有一定尺寸,热传导系数也为一定值,因此在冷却过程中工件内沿截面将产生一定温度梯度,表面温度低,心部温度高,表面和心部存在着温度差.在工件冷却过程中还伴随若两种物理现象:一是热膨胀,随着温度下降,工件线长度将收缩;另一个是当温度下降到马氏体转变点时
6、发生奥氏体向马氏体转变,这将使比体积增大。由于冷却过程中存在着温差,因而沿工件截面不同部位热膨胀毋将不同,工件不同部位将产生内应力;由于工件内温差的存在,还可能出现温度下降快的部位低于点,发生马氏体转变,体积胀大,而温度高的部位尚高于点,仍处于奥氏体状态,这不同部位由于比体积变化的差别,也将产生内应力.因此,在淬火冷却过程中可能产生两种内应力:一种是热应力;另一种是组织应力.根据内应力的存在时间特性还可分为瞬时应力和残余应力。工件在冷却过程中某一时刻所产生的内应力叫瞬时应力;工件冷却终了,残存于工件内部的应力称为残余应力。热应力是指工件在加热(或冷却)时,由于不同部位的温度差异,而导致热胀(或
7、冷缩)的不一致所引起的应力.现以一实心圆柱体为例,说明其冷却过程中内应力的形成及变化规律.这里仅讨论其轴向应力.冷却刚开始时,由于表面冷却快,温度低,收缩多,而心部则冷却悝,温度高,收缩小,表里相互牵制的结果,就在表层产生了拉应力,心部则承受着压应力。随着冷却的进行,表里温差增大,其内应力也相应增大,当应力增大到超过该温度下的屈服强度时,便产生了塑性变形.由于心部的渥度高于表层,因而总是心部先行沿轴向收缩.塑性变形的结果,使其内应力不再增大.冷却到一定时间后,表层温度的降低将逐渐减慢,则其收缩量也逐渐减小.而此时心部则仍在不断收缩,于是表层的拉应力及心部压应力将逐渐减小,直至消失但是随着冷却的
8、继续进行,表层湿度越来越低,收缩量也越来越少,甚至停止收缩。而心部由于温度尚高,还要不断地收缩,最后在工件表层形成压应力,而心部则为拉应力,但由于温度已低,不易产生塑性变形,所以这应力将随冷却的进行而不断增大,并最后保留于工件内部,成为残余应力.由此可见,冷却过程中的热应力开始是使表层受拉,心部受压,而最后留下的残余应力则是表层受压,心部受拉.综上所述,淬火冷却时产生的热应力是由于冷却过程中城面温度差所造成的,冷却速度越大,截面温差越大,则产生的热应力越大.在相同冷却介质条件下.工件加热温度越高、尺寸越大、钢材热传导系数越小,工件内温差越大,热应力越大.工件若在高温时冷却不均匀,将会发生扭曲变
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 钢铁 淬火 知识 总结