数学模型与数学建模.ppt
《数学模型与数学建模.ppt》由会员分享,可在线阅读,更多相关《数学模型与数学建模.ppt(44页珍藏版)》请在优知文库上搜索。
1、数学模型与数学建模主要内容n1.什么是数学模型? 1.1基本概念 1.2特点和分类n2.如何数学建模? 2.1方法和步骤 2.2示例n3.为什么数学建模? 3.1现实意义 3.2个人收获21.什么是数学模型?n数学n模型n数学模型3自然离不开数学1、圆形蜘蛛网是一个简单漂亮的数学创造2、蜂巢消耗最少的材料和最少的“工时”巴黎科学院院士、瑞士数学家克尼格 3、在矿物结构中,可以找到许多更为奇妙的空间图形 4问题/应用来自数学的贡献核磁共振成像技术(MRI)计算机辅助成像(CAT)积分几何空中交通管制控制论期权定价Black-Scholes期权模型和Monte Carlo模拟全局勘察、信号处理、图
2、象处理、数据采掘应急用储备物资的管理运筹学、最优化理论复杂网络的稳定性逻辑、计算机科学、组合学机密和完整性数论、密码学/组合学大气和海洋的建模小波、统计学、数值分析敏捷制造、自动制造、可视化、机器人过程质量控制中的几何学、控制论设计和训练模拟、建模、离散数学人类基因组分析数据采掘、模式识别、算法合理的药物设计数据采掘、组合学、统计学Seiberg- Witten方程(弦论)几何学宇宙数据的解释数据采掘、建模、奇点理论复合材料的设计系统控制论、计算、偏微分方程地震的分析和预测过程控制中的统计学动力系统/湍流建模社会离不开数学5 宇宙之大,粒子之微,火箭之速,华工之巧,地球之变,生物之谜,日用之繁
3、,数学无处不在,凡是有“量量”和和“形形”的地方就少不了用数学,研究量(或形)的关系、量(或形)的变化、量(或形)的变化关系、量(或形)的关系的变化等问题都离不开数学作为语言工具 。著名数学家 华罗庚 任何应用问题,一旦建立起了数学的模型,就会立即任何应用问题,一旦建立起了数学的模型,就会立即显现出解决问题的清晰途径和通向胜利的一线曙光。显现出解决问题的清晰途径和通向胜利的一线曙光。马克思教导我们:一门学科只有成功地运用数学运用数学时,才算达到了完善的地步!6玩具、照片、飞机、火箭模型玩具、照片、飞机、火箭模型 实物模型实物模型我们常见的模型我们常见的模型7玩具、照片、飞机、火箭模型玩具、照片
4、、飞机、火箭模型 实物模型实物模型水箱中的舰艇、风洞中的飞机水箱中的舰艇、风洞中的飞机 物理模型物理模型我们常见的模型我们常见的模型地图、电路图、分子结构图地图、电路图、分子结构图 符号模型符号模型8玩具、照片、飞机、火箭模型玩具、照片、飞机、火箭模型 实物模型实物模型水箱中的舰艇、风洞中的飞机水箱中的舰艇、风洞中的飞机 物理模型物理模型地图、电路图、分子结构图地图、电路图、分子结构图 符号模型符号模型模型模型是为了一定目的,对客观事物的一部分进行简缩、是为了一定目的,对客观事物的一部分进行简缩、抽象、提炼出来的抽象、提炼出来的原型原型的替代物,集中反映了的替代物,集中反映了原型原型中中人们需
5、要的那一部分特征。人们需要的那一部分特征。我们常见的模型我们常见的模型9模型物质模型(形象模型)理想模型(抽象模型)直观模型物理模型思维模型符号模型数学模型模型的分类10 “1”是最简单的数学模型。是最简单的数学模型。 那些我们所熟知的数学模型 设水池的总容量为设水池的总容量为1。两台抽水机同时工作所需要时。两台抽水机同时工作所需要时间为间为 例例 两台不同功率的抽水机向一个大水池中注水。如果第两台不同功率的抽水机向一个大水池中注水。如果第一台抽水机单独工作,一台抽水机单独工作,4小时可以将水池注满;如果第二小时可以将水池注满;如果第二台抽水机单独工作,台抽水机单独工作,6小时可以将水池注满。
6、现在由两台小时可以将水池注满。现在由两台抽水机同时工作,需要多长时间注满水池?抽水机同时工作,需要多长时间注满水池?4 . 261411(小时)(小时) 11弧度制是对角大小的另一种度量弧度制是对角大小的另一种度量方式,弧度制的基本原理与平面方式,弧度制的基本原理与平面相似形有关。相似形有关。AABBO1扇形扇形AOB相似于扇形相似于扇形BOA OAAOABBA因此,可以用扇形弧长与半径之比来确定圆心角。因此,可以用扇形弧长与半径之比来确定圆心角。 OAABAOBA比如,当扇形的弧长与半径之比为比如,当扇形的弧长与半径之比为2时,对应的圆心角是直角;时,对应的圆心角是直角;时,对应的圆心角是平
7、角(扇形刚好是半圆)时,对应的圆心角是平角(扇形刚好是半圆). 当扇形的弧长与半径之比为当扇形的弧长与半径之比为弧度制的主要特点是只用数就可以表示角的大小,并不需要在弧度值的后弧度制的主要特点是只用数就可以表示角的大小,并不需要在弧度值的后面再加量纲(名数)。面再加量纲(名数)。 引入角的弧度制实际上是数学建模的过程,这种数学模型恰是关于几何图形的数学模型。12方程是表现等量关系的数学模型方程是表现等量关系的数学模型 31 10 x“ ”那些我们所熟知的数学模型例例 一百匹马,一百块瓦,大马驮仨,小马驮俩,马仔俩驮一一百匹马,一百块瓦,大马驮仨,小马驮俩,马仔俩驮一块。问大马、小马、马仔各几何
8、。块。问大马、小马、马仔各几何。解解 设大马,小马,马仔分别为设大马,小马,马仔分别为1001321002xyzxyz5(20)32(100)3yxzx匹,应有匹,应有分别消去分别消去 和和 可得可得, ,x y zzy这是一个不完全方程组的求整数解问题这是一个不完全方程组的求整数解问题丢番图问题。丢番图问题。13 “点点”、“面面”、“线线”抽象化的数学模型抽象化的数学模型那些我们所熟知的数学模型1726年,瑞士数学家欧拉(年,瑞士数学家欧拉(17011783)受聘于沙俄科学院,后来)受聘于沙俄科学院,后来出任数学部主任。出任数学部主任。1736年秋天,欧拉收到来自东普鲁士首都哥尼斯年秋天,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学模型 数学 建模