五年级奥数第十讲数论之余数问题教师版[1].docx
《五年级奥数第十讲数论之余数问题教师版[1].docx》由会员分享,可在线阅读,更多相关《五年级奥数第十讲数论之余数问题教师版[1].docx(27页珍藏版)》请在优知文库上搜索。
1、第十讲:数论之余数问即余数问题是数论学问板块中另一个内容丰富,题目难度较大的学问体系,也是各大杯赛小升初考试必考的奥数学问点,所以学好本讲对于学生来说特别重要。很多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理,),与中国剩余定理和有关弃九法原理的应用。学问点拨:一、带余除法的定义与性质一一般地,假如a是整数,b是整数(bWO),若有ab=qr,也就是a=bXq+r,Orb5我们称上面的除法算式为个带余除法算式。这里:(1)当,=O时:我们称a可以被b整除,q称为a除以b的商或完全
2、商(2)当rO时:我们称a不行以被b整除,q称为a除以b的商或不完全商一个完备的带余除法讲解模型:中如图,这是一堆书,共有a本,这个a就可以理解b-1为被除数,现在要求依据b本一捆打包,那么b就是除I1.I1.I1.1.1.1.Id1.数的角色,经过打包后共打包了C捆,那么这个C就是a本书商,最终还剩余d本,这个d就是余数。这个图能够让学生清楚的明白带余除法算式中4个量的关系。并且可以看出余数确定要比除数小。二、三大余数定理;1 .余数的加法定理a与b的和除以C的余数,等于a,b分别除以C的余数之和,或这个和除以C的余数。于4,即两个余数的和3+1.当余数的利比除数大时,所求的余数等余数之和再
3、除以C的余数。例如:23,19除以5的余数分别是3和4,故23+19=42除以5的余数等于3+4=7除以5的余数,即2.2 .余数的乘法定理a与b的乘积除以c的余数,等Ja,b分别除以C的余数的积,或者这个积除以C所得的余数.例如:23,16除以5的余数分别是3和1,所以2316除以5的余数等J-3X1=3,当余数的和比除数大时,所求的余数等于余数之积再除以C的余数。例如:23,例除以5的余数分别是3和4,所以23X19除以5的余数等于3X4除以5的余数,即2.3 .同余定理若两个整数a、b被自然数m除有相同的余数,那么称a、b对于模m同余,用式子表示为:a三b(modm),左边的式子叫做同余
4、式。同余式读作:a同余于b,模11u由同余的性质,我们可以得到一个特别重要的推论:若两个数a,b除以同一个数m得到的余数相同,则a,b的差确定能被m整除用式子表示为:假如有a三b(modm),那么确定有a-b=mk,k是整数,即m(a-b)三、弃九法原理:在公元前9世纪,有个印度数学家名叫花拉子米,写有一本花拉子米算术,他们在计算时通常是在一个铺有沙子的土板上进行,由于胆怯以前的计算结果丢失而常常检验加法运算是否正确,他们的检验方式是这样进行的:例如:检验算式1234+1898+18922+678967+178902=8899231234除以9的余数为11898除以9的余数为818922除以9
5、的余数为4678967除以9的余数为7178902除以9的余数为O这些余数的和除以9的余数为2而等式右边和除以9的余数为3,那么上面这个算式确定是错的。上述检验方法恰好用到的就是我们前面所讲的余数的加法定理,即假如这个等式是正确的,那么左边几个加数除以9的余数的和再除以9的余数确定与等式右边和除以9的余数相同。而我们在求一个自然数除以9所得的余数时,常常不用去列除法竖式进行计算,只要计算这个自然数的各个位数字之和除以9的余数就可以了,在算的时候往往就是一个9一个9的我并且划去,所以这种方法被称作“弃九法”。所以我们总结出弃九发原理:任何一个整数模9同余于它的各数位上数字之和。以后我们求一个整数
6、被9除的余数,只要先计算这个整数各数位上数字之和,再求这个和被9除的余数即可。利用十进制的这个特性,不仅可以检验几个数相加,对于检验相乘、相除和乘方的结果对不对同样适用留意:弃九法只能知道原题确定是错的或有可能正确,但不能保证确定正确。例如:检验算式9+9=9时,等式两边的除以9的余数都是0,但是明显算式是错误的但是反过来,假如一个算式确定是正确的,那么它的等式2两端确定满意弃九法的规律。这个思想往往可以帮助我们解决一些较困难的算式迷问题。四、中国剩余定理:1 .中国古代趣题:中国数学名著孙子算经里有这样的问题:“今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?”答
7、日:“二十三此类问题我们可以称为“物不知其数”类型,乂被称为“韩信点兵韩信点兵又称为中国剩余定理,相传汉高祖刘邦问大将军韩信统御兵士多少,韩信答说,每3人一列余1人、5人一列余2人、7人一列余4人、13人一列余6人。刘邦茫然而不知其数。我们先考虑下列的问题:假设兵不满一万,每5人一列、9人一列、13人一列、17人一列都剩3人,则兵有多少?首先我们先求5、9、13、17之最小公倍数9943(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。孙子算经的作者与的确著作年头均不行考,不过依据考证,著作年头不会在晋朝之后,以这个考证来说上面这种问题的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 年级 第十 数论 余数 问题 教师版
